{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T22:26:18Z","timestamp":1730327178826,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":22,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2023,8]]},"DOI":"10.1145\/3589737.3605985","type":"proceedings-article","created":{"date-parts":[[2023,8,28]],"date-time":"2023-08-28T16:00:57Z","timestamp":1693238457000},"page":"1-7","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":0,"title":["Enabling local learning for generative-replay-based continual learning with a recurrent model of the insect memory center"],"prefix":"10.1145","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-8883-9772","authenticated-orcid":false,"given":"Raphael","family":"Norman-Tenazas","sequence":"first","affiliation":[{"name":"Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, United States"}]},{"ORCID":"http:\/\/orcid.org\/0009-0003-6916-0168","authenticated-orcid":false,"given":"Isaac","family":"Western","sequence":"additional","affiliation":[{"name":"Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, United States"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6856-7968","authenticated-orcid":false,"given":"Gautam","family":"Vallabha","sequence":"additional","affiliation":[{"name":"Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, United States"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5705-9028","authenticated-orcid":false,"given":"Matthew J","family":"Roos","sequence":"additional","affiliation":[{"name":"Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, United States"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7397-8531","authenticated-orcid":false,"given":"Erik C","family":"Johnson","sequence":"additional","affiliation":[{"name":"Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, United States"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3422-7011","authenticated-orcid":false,"given":"Brian S","family":"Robinson","sequence":"additional","affiliation":[{"name":"Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, United States"}]}],"member":"320","published-online":{"date-parts":[[2023,8,28]]},"reference":[{"key":"e_1_3_2_1_1_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuron.2014.07.035"},{"key":"e_1_3_2_1_2_1","doi-asserted-by":"publisher","DOI":"10.1038\/nature12063"},{"key":"e_1_3_2_1_3_1","doi-asserted-by":"publisher","DOI":"10.1126\/science.aam9868"},{"key":"e_1_3_2_1_4_1","doi-asserted-by":"publisher","DOI":"10.1109\/MM.2018.112130359"},{"key":"e_1_3_2_1_5_1","first-page":"2908","article-title":"Replay in deep learning: Current approaches and missing biological elements","volume":"33","author":"Hayes Tyler L","year":"2021","unstructured":"Tyler L Hayes , Giri P Krishnan , Maxim Bazhenov , Hava T Siegelmann , Terrence J Sejnowski , and Christopher Kanan . 2021 . Replay in deep learning: Current approaches and missing biological elements . Neural Computation 33 , 11 (2021), 2908 -- 2950 . Tyler L Hayes, Giri P Krishnan, Maxim Bazhenov, Hava T Siegelmann, Terrence J Sejnowski, and Christopher Kanan. 2021. Replay in deep learning: Current approaches and missing biological elements. Neural Computation 33, 11 (2021), 2908--2950.","journal-title":"Neural Computation"},{"key":"e_1_3_2_1_6_1","doi-asserted-by":"publisher","DOI":"10.1038\/nrn1074"},{"key":"e_1_3_2_1_7_1","doi-asserted-by":"publisher","DOI":"10.7554\/eLife.10719"},{"key":"e_1_3_2_1_8_1","unstructured":"Alex Krizhevsky et al. 2009. Learning multiple layers of features from tiny images. (2009). Alex Krizhevsky et al. 2009. Learning multiple layers of features from tiny images. (2009)."},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.1038\/s42256-022-00452-0"},{"key":"e_1_3_2_1_10_1","doi-asserted-by":"publisher","DOI":"10.48550\/arxiv.1411.0247"},{"key":"e_1_3_2_1_11_1","doi-asserted-by":"publisher","DOI":"10.1038\/s41583-020-0277-3"},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuron.2017.01.030"},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"publisher","DOI":"10.3389\/fnins.2018.00105"},{"key":"e_1_3_2_1_14_1","volume-title":"The Drosophila mushroom body: from architecture to algorithm in a learning circuit. Annual review of neuroscience 43","author":"Modi Mehrab N","year":"2020","unstructured":"Mehrab N Modi , Yichun Shuai , and Glenn C Turner . 2020. The Drosophila mushroom body: from architecture to algorithm in a learning circuit. Annual review of neuroscience 43 ( 2020 ), 465--484. Mehrab N Modi, Yichun Shuai, and Glenn C Turner. 2020. The Drosophila mushroom body: from architecture to algorithm in a learning circuit. Annual review of neuroscience 43 (2020), 465--484."},{"key":"e_1_3_2_1_15_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neunet.2019.01.012"},{"key":"e_1_3_2_1_16_1","doi-asserted-by":"publisher","DOI":"10.1101\/2023.01.18.524467"},{"key":"e_1_3_2_1_17_1","unstructured":"Louis K Scheffer C Shan Xu Michal Januszewski Zhiyuan Lu Shin-ya Takemura Kenneth J Hayworth Gary B Huang Kazunori Shinomiya Jeremy Maitlin-Shepard Stuart Berg etal 2020. A connectome and analysis of the adult Drosophila central brain. Elife 9 (2020). Louis K Scheffer C Shan Xu Michal Januszewski Zhiyuan Lu Shin-ya Takemura Kenneth J Hayworth Gary B Huang Kazunori Shinomiya Jeremy Maitlin-Shepard Stuart Berg et al. 2020. A connectome and analysis of the adult Drosophila central brain. Elife 9 (2020)."},{"key":"e_1_3_2_1_18_1","volume-title":"Algorithmic insights on continual learning from fruit flies. arXiv preprint arXiv:2107.07617","author":"Shen Yang","year":"2021","unstructured":"Yang Shen , Sanjoy Dasgupta , and Saket Navlakha . 2021. Algorithmic insights on continual learning from fruit flies. arXiv preprint arXiv:2107.07617 ( 2021 ). Yang Shen, Sanjoy Dasgupta, and Saket Navlakha. 2021. Algorithmic insights on continual learning from fruit flies. arXiv preprint arXiv:2107.07617 (2021)."},{"key":"e_1_3_2_1_19_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neunet.2019.09.036"},{"key":"e_1_3_2_1_20_1","volume-title":"Brain-inspired replay for continual learning with artificial neural networks. Nature communications 11, 1","author":"van de Ven Gido M","year":"2020","unstructured":"Gido M van de Ven , Hava T Siegelmann , and Andreas S Tolias . 2020. Brain-inspired replay for continual learning with artificial neural networks. Nature communications 11, 1 ( 2020 ), 1--14. Gido M van de Ven, Hava T Siegelmann, and Andreas S Tolias. 2020. Brain-inspired replay for continual learning with artificial neural networks. Nature communications 11, 1 (2020), 1--14."},{"key":"e_1_3_2_1_21_1","doi-asserted-by":"publisher","DOI":"10.1038\/s42256-022-00568-3"},{"key":"e_1_3_2_1_22_1","doi-asserted-by":"publisher","DOI":"10.1109\/jproc.2020.3045625"}],"event":{"name":"ICONS '23: 2023 International Conference on Neuromorphic Systems","sponsor":["SIGDA ACM Special Interest Group on Design Automation"],"location":"Santa Fe NM USA","acronym":"ICONS '23"},"container-title":["Proceedings of the 2023 International Conference on Neuromorphic Systems"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3589737.3605985","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,8,28]],"date-time":"2023-08-28T16:01:45Z","timestamp":1693238505000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3589737.3605985"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,8]]},"references-count":22,"alternative-id":["10.1145\/3589737.3605985","10.1145\/3589737"],"URL":"https:\/\/doi.org\/10.1145\/3589737.3605985","relation":{},"subject":[],"published":{"date-parts":[[2023,8]]},"assertion":[{"value":"2023-08-28","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}