{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T22:20:51Z","timestamp":1730326851175,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":59,"publisher":"ACM","funder":[{"name":"This work is supported by National Natural Science Foundation of China","award":["No. 62372043"]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2024,5,13]]},"DOI":"10.1145\/3589334.3645468","type":"proceedings-article","created":{"date-parts":[[2024,5,8]],"date-time":"2024-05-08T11:08:13Z","timestamp":1715166493000},"page":"4128-4137","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":0,"title":["MSynFD: Multi-hop Syntax Aware Fake News Detection"],"prefix":"10.1145","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-4253-2032","authenticated-orcid":false,"given":"Liang","family":"Xiao","sequence":"first","affiliation":[{"name":"School of Computer Science, Beijing Institute of Technology, Beijing, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1037-1361","authenticated-orcid":false,"given":"Qi","family":"Zhang","sequence":"additional","affiliation":[{"name":"School of Computer Science, Tongji University, Shanghai, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4905-8994","authenticated-orcid":false,"given":"Chongyang","family":"Shi","sequence":"additional","affiliation":[{"name":"School of Computer Science, Beijing Institute of Technology, Beijing, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1133-9379","authenticated-orcid":false,"given":"Shoujin","family":"Wang","sequence":"additional","affiliation":[{"name":"School of Computer Science, University of Technology Sydney, Sydney, Australia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0191-7171","authenticated-orcid":false,"given":"Usman","family":"Naseem","sequence":"additional","affiliation":[{"name":"School of Computing, Macquarie University, Sydney, Australia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7176-2078","authenticated-orcid":false,"given":"Liang","family":"Hu","sequence":"additional","affiliation":[{"name":"School of Computer Science, Tongji University, Shanghai, China"}]}],"member":"320","published-online":{"date-parts":[[2024,5,13]]},"reference":[{"key":"e_1_3_2_2_1_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ipm.2022.103146"},{"key":"e_1_3_2_2_2_1","doi-asserted-by":"publisher","DOI":"10.1145\/1963405.1963500"},{"key":"e_1_3_2_2_3_1","doi-asserted-by":"publisher","DOI":"10.3115\/v1"},{"volume-title":"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. CoRR abs\/1810.04805","year":"2018","author":"Devlin Jacob","key":"e_1_3_2_2_4_1","unstructured":"Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. CoRR abs\/1810.04805 (2018). arXiv:1810.04805 http:\/\/arxiv.org\/abs\/1810.04805"},{"key":"e_1_3_2_2_5_1","doi-asserted-by":"publisher","DOI":"10.1145\/3404835"},{"key":"e_1_3_2_2_6_1","doi-asserted-by":"publisher","unstructured":"Maarten Grootendorst. 2020. KeyBERT: Minimal keyword extraction with BERT. https:\/\/doi.org\/10.5281\/zenodo.4461265","DOI":"10.5281\/zenodo.4461265"},{"key":"e_1_3_2_2_7_1","doi-asserted-by":"publisher","DOI":"10.18653\/v1"},{"key":"e_1_3_2_2_8_1","doi-asserted-by":"publisher","DOI":"10.1016\/j"},{"key":"e_1_3_2_2_9_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2022.116866"},{"volume-title":"Hierarchical Neural Network with Bidirectional Selection Mechanism for Sentiment Analysis","author":"Jiang Xinyu","key":"e_1_3_2_2_10_1","unstructured":"Xinyu Jiang, Qi Zhang, and Chongyang Shi. 2022. Hierarchical Neural Network with Bidirectional Selection Mechanism for Sentiment Analysis. In IJCNN. IEEE, 1--8."},{"key":"e_1_3_2_2_11_1","doi-asserted-by":"publisher","DOI":"10.1109\/IIAIAAI55812.2022.00029"},{"volume-title":"Semi-Supervised Classification with Graph Convolutional Networks. In International Conference on Learning Representations. https:\/\/openreview.net\/forum?id=SJU4ayYgl","author":"Thomas","key":"e_1_3_2_2_12_1","unstructured":"Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with Graph Convolutional Networks. In International Conference on Learning Representations. https:\/\/openreview.net\/forum?id=SJU4ayYgl"},{"key":"e_1_3_2_2_13_1","doi-asserted-by":"crossref","unstructured":"An Lao Chongyang Shi and Yayi Yang. 2021. Rumor Detection with Field of Linear and Non-Linear Propagation. In WWW. 3178--3187.","DOI":"10.1145\/3442381.3450016"},{"volume-title":"Frequency Spectrum is More Effective for Multimodal Representation and Fusion: A Multimodal Spectrum Rumor Detector. CoRR abs\/2312.11023","year":"2023","author":"Lao An","key":"e_1_3_2_2_14_1","unstructured":"An Lao, Qi Zhang, Chongyang Shi, Longbing Cao, Kun Yi, Liang Hu, and Duoqian Miao. 2023. Frequency Spectrum is More Effective for Multimodal Representation and Fusion: A Multimodal Spectrum Rumor Detector. CoRR abs\/2312.11023 (2023)."},{"key":"e_1_3_2_2_15_1","doi-asserted-by":"publisher","DOI":"10.18653\/v1"},{"key":"e_1_3_2_2_16_1","doi-asserted-by":"publisher","DOI":"10.18653\/v1"},{"key":"e_1_3_2_2_17_1","doi-asserted-by":"publisher","DOI":"10.18653\/v1"},{"key":"e_1_3_2_2_18_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2022.108605"},{"key":"e_1_3_2_2_19_1","doi-asserted-by":"publisher","DOI":"10.5555\/3061053.3061153"},{"key":"e_1_3_2_2_20_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11042-022-12764--9"},{"key":"e_1_3_2_2_21_1","doi-asserted-by":"publisher","DOI":"10.1145\/3459637"},{"key":"e_1_3_2_2_22_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jjimei.2020.100007"},{"key":"e_1_3_2_2_23_1","doi-asserted-by":"publisher","DOI":"10.1145\/3517214"},{"key":"e_1_3_2_2_24_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2023.110235"},{"volume-title":"Test Long: Attention with Linear Biases Enables Input Length Extrapolation. In International Conference on Learning Representations. https:\/\/openreview.net\/forum?id=R8sQPpGCv0","year":"2022","author":"Press Ofir","key":"e_1_3_2_2_25_1","unstructured":"Ofir Press, Noah Smith, and Mike Lewis. 2022. Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation. In International Conference on Learning Representations. https:\/\/openreview.net\/forum?id=R8sQPpGCv0"},{"key":"e_1_3_2_2_26_1","doi-asserted-by":"publisher","DOI":"10.1145\/3404835.3462871"},{"key":"e_1_3_2_2_27_1","article-title":"Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer","volume":"21","author":"Raffel Colin","year":"2020","unstructured":"Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. J. Mach. Learn. Res. 21, 1, Article 140 (jan 2020), 67 pages.","journal-title":"J. Mach. Learn. Res."},{"key":"e_1_3_2_2_28_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.icte.2021.10.003"},{"key":"e_1_3_2_2_29_1","doi-asserted-by":"publisher","DOI":"10.18653\/v1"},{"key":"e_1_3_2_2_30_1","doi-asserted-by":"publisher","DOI":"10.1145\/3292500.3330935"},{"key":"e_1_3_2_2_31_1","doi-asserted-by":"publisher","DOI":"10.1089\/big.2020.0062"},{"key":"e_1_3_2_2_32_1","doi-asserted-by":"publisher","DOI":"10.1145\/3137597.3137600"},{"key":"e_1_3_2_2_33_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ipm.2021.102618"},{"key":"e_1_3_2_2_34_1","doi-asserted-by":"publisher","DOI":"10.1145\/3591106.3592250"},{"key":"e_1_3_2_2_35_1","doi-asserted-by":"publisher","DOI":"10.18653\/v1"},{"key":"e_1_3_2_2_36_1","doi-asserted-by":"publisher","unstructured":"Tina Esther Trueman Ashok Kumar J. Narayanasamy P. and Vidya J. 2021. Attention-Based C-BiLSTM for Fake News Detection. Appl. Soft Comput. 110 C (oct 2021) 8 pages. https:\/\/doi.org\/10.1016\/j.asoc.2021.107600","DOI":"10.1016\/j.asoc.2021.107600"},{"key":"e_1_3_2_2_37_1","doi-asserted-by":"publisher","DOI":"10.18653\/v1"},{"key":"e_1_3_2_2_38_1","doi-asserted-by":"publisher","DOI":"10.18653\/v1"},{"key":"e_1_3_2_2_39_1","doi-asserted-by":"publisher","DOI":"10.5555\/3295222.3295349"},{"volume-title":"Graph Attention Networks. In International Conference on Learning Representations. https:\/\/openreview.net\/forum?id=rJXMpikCZ","year":"2018","author":"Velickovic Petar","key":"e_1_3_2_2_40_1","unstructured":"Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Li\u00f2, and Yoshua Bengio. 2018. Graph Attention Networks. In International Conference on Learning Representations. https:\/\/openreview.net\/forum?id=rJXMpikCZ"},{"key":"e_1_3_2_2_41_1","doi-asserted-by":"publisher","DOI":"10.1109\/TMM.2023"},{"key":"e_1_3_2_2_42_1","doi-asserted-by":"publisher","DOI":"10.1145\/3485447.3512263"},{"key":"e_1_3_2_2_43_1","doi-asserted-by":"publisher","DOI":"10.1145\/3219819.3219903"},{"key":"e_1_3_2_2_44_1","doi-asserted-by":"publisher","DOI":"10.1145\/3580305.3599298"},{"volume-title":"Bias Mitigation for Evidence-Aware Fake News Detection by Causal Intervention (SIGIR '22)","year":"1850","author":"Liu Qiang","key":"e_1_3_2_2_45_1","unstructured":"JunfeiWu, Qiang Liu,Weizhi Xu, and ShuWu. 2022. Bias Mitigation for Evidence-Aware Fake News Detection by Causal Intervention (SIGIR '22). Association for Computing Machinery, New York, NY, USA, 2308--2313. https:\/\/doi.org\/10.1145\/ 3477495.3531850"},{"key":"e_1_3_2_2_46_1","doi-asserted-by":"publisher","DOI":"10.18653\/v1"},{"volume-title":"Article arXiv:2201.00989 (Jan.","year":"2022","author":"Xing Bowen","key":"e_1_3_2_2_47_1","unstructured":"Bowen Xing and Ivor Tsang. 2022. DigNet: Digging Clues from Local-Global Interactive Graph for Aspect-level Sentiment Classification. arXiv e-prints, Article arXiv:2201.00989 (Jan. 2022), arXiv:2201.00989 pages. https:\/\/doi.org\/10.48550\/ arXiv.2201.00989 arXiv:2201.00989 [cs.CL]"},{"key":"e_1_3_2_2_48_1","doi-asserted-by":"publisher","DOI":"10.1145\/3485447.3512122"},{"key":"e_1_3_2_2_49_1","doi-asserted-by":"publisher","DOI":"10.1145\/2350190.2350203"},{"key":"e_1_3_2_2_50_1","volume-title":"Wortman Vaughan (Eds.)","volume":"34","author":"Ying Chengxuan","year":"2021","unstructured":"Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-Yan Liu. 2021. Do Transformers Really Perform Badly for Graph Representation?. In Advances in Neural Information Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (Eds.), Vol. 34. Curran Associates, Inc., 28877--28888. https:\/\/proceedings.neurips. cc\/paper_files\/paper\/2021\/file\/f1c1592588411002af340cbaedd6fc33-Paper.pdf"},{"key":"e_1_3_2_2_51_1","doi-asserted-by":"publisher","unstructured":"Seunghyun Yoon Kunwoo Park Joongbo Shin Hongjun Lim Seungpil Won Meeyoung Cha and Kyomin Jung. 2019. Detecting Incongruity between News Headline and Body Text via a Deep Hierarchical Encoder. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence (Honolulu Hawaii USA) (AAAI'19\/IAAI'19\/EAAI'19). AAAI Press Article 98 10 pages. https: \/\/doi.org\/10.1609\/aaai.v33i01.3301791","DOI":"10.1609\/aaai.v33i01.3301791"},{"key":"e_1_3_2_2_52_1","doi-asserted-by":"publisher","DOI":"10.5555\/3172077.3172434"},{"key":"e_1_3_2_2_53_1","doi-asserted-by":"publisher","DOI":"10.1145\/3343031.3350850"},{"key":"e_1_3_2_2_54_1","doi-asserted-by":"publisher","DOI":"10.18653\/v1"},{"volume-title":"Tripartite Collaborative Filtering with Observability and Selection for Debiasing Rating Estimation on Missing-Not-at-Random Data","author":"Zhang Qi","key":"e_1_3_2_2_55_1","unstructured":"Qi Zhang, Longbing Cao, Chongyang Shi, and Liang Hu. 2021. Tripartite Collaborative Filtering with Observability and Selection for Debiasing Rating Estimation on Missing-Not-at-Random Data. In AAAI. AAAI Press, 4671--4678."},{"key":"e_1_3_2_2_56_1","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2023.3274694"},{"key":"e_1_3_2_2_57_1","doi-asserted-by":"publisher","DOI":"10.1145\/3442381"},{"key":"e_1_3_2_2_58_1","doi-asserted-by":"publisher","DOI":"10.1145\/3477495.3531816"},{"key":"e_1_3_2_2_59_1","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2022.3185151"}],"event":{"name":"WWW '24: The ACM Web Conference 2024","sponsor":["SIGWEB ACM Special Interest Group on Hypertext, Hypermedia, and Web"],"location":"Singapore Singapore","acronym":"WWW '24"},"container-title":["Proceedings of the ACM Web Conference 2024"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3589334.3645468","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T17:08:48Z","timestamp":1725988128000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3589334.3645468"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,5,13]]},"references-count":59,"alternative-id":["10.1145\/3589334.3645468","10.1145\/3589334"],"URL":"https:\/\/doi.org\/10.1145\/3589334.3645468","relation":{},"subject":[],"published":{"date-parts":[[2024,5,13]]},"assertion":[{"value":"2024-05-13","order":3,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}