{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T22:20:31Z","timestamp":1730326831558,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":29,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2023,10,21]]},"DOI":"10.1145\/3583780.3615472","type":"proceedings-article","created":{"date-parts":[[2023,10,21]],"date-time":"2023-10-21T07:45:42Z","timestamp":1697874342000},"page":"4545-4551","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":0,"title":["Enhancing Catalog Relationship Problems with Heterogeneous Graphs and Graph Neural Networks Distillation"],"prefix":"10.1145","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-1300-6140","authenticated-orcid":false,"given":"Boxin","family":"Du","sequence":"first","affiliation":[{"name":"Amazon, New York, NY, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8062-4224","authenticated-orcid":false,"given":"Rob","family":"Barton","sequence":"additional","affiliation":[{"name":"Amazon, New York, NY, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2861-6504","authenticated-orcid":false,"given":"Grant","family":"Galloway","sequence":"additional","affiliation":[{"name":"Amazon, Edinburgh, United Kingdom"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9548-1227","authenticated-orcid":false,"given":"Junzhou","family":"Huang","sequence":"additional","affiliation":[{"name":"Amazon, New York, NY, USA"}]},{"ORCID":"http:\/\/orcid.org\/0009-0004-1223-5912","authenticated-orcid":false,"given":"Shioulin","family":"Sam","sequence":"additional","affiliation":[{"name":"Amazon, New York, NY, USA"}]},{"ORCID":"http:\/\/orcid.org\/0009-0004-8369-4825","authenticated-orcid":false,"given":"Ismail","family":"Tutar","sequence":"additional","affiliation":[{"name":"Amazon, Seattle, WA, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5268-6620","authenticated-orcid":false,"given":"Changhe","family":"Yuan","sequence":"additional","affiliation":[{"name":"Amazon, New York, NY, USA"}]}],"member":"320","published-online":{"date-parts":[[2023,10,21]]},"reference":[{"key":"e_1_3_2_1_1_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-48881-3_56"},{"key":"e_1_3_2_1_2_1","doi-asserted-by":"publisher","DOI":"10.1109\/MSP.2017.2693418"},{"volume-title":"Relational graph attention networks. arXiv preprint arXiv:1904.05811","year":"2019","author":"Busbridge Dan","key":"e_1_3_2_1_3_1","unstructured":"Dan Busbridge , Dane Sherburn , Pietro Cavallo , and Nils Y Hammerla . 2019. Relational graph attention networks. arXiv preprint arXiv:1904.05811 ( 2019 ). Dan Busbridge, Dane Sherburn, Pietro Cavallo, and Nils Y Hammerla. 2019. Relational graph attention networks. arXiv preprint arXiv:1904.05811 (2019)."},{"volume-title":"On self-distilling graph neural network. arXiv preprint arXiv:2011.02255","year":"2020","author":"Chen Yuzhao","key":"e_1_3_2_1_4_1","unstructured":"Yuzhao Chen , Yatao Bian , Xi Xiao , Yu Rong , Tingyang Xu , and Junzhou Huang . 2020. On self-distilling graph neural network. arXiv preprint arXiv:2011.02255 ( 2020 ). Yuzhao Chen, Yatao Bian, Xi Xiao, Yu Rong, Tingyang Xu, and Junzhou Huang. 2020. On self-distilling graph neural network. arXiv preprint arXiv:2011.02255 (2020)."},{"key":"e_1_3_2_1_5_1","doi-asserted-by":"publisher","DOI":"10.1145\/3442381.3449922"},{"key":"e_1_3_2_1_6_1","doi-asserted-by":"publisher","DOI":"10.1145\/3357384.3357944"},{"volume-title":"Hypergraph pre-training with graph neural networks. arXiv preprint arXiv:2105.10862","year":"2021","author":"Du Boxin","key":"e_1_3_2_1_7_1","unstructured":"Boxin Du , Changhe Yuan , Robert Barton , Tal Neiman , and Hanghang Tong . 2021a. Hypergraph pre-training with graph neural networks. arXiv preprint arXiv:2105.10862 ( 2021 ). Boxin Du, Changhe Yuan, Robert Barton, Tal Neiman, and Hanghang Tong. 2021a. Hypergraph pre-training with graph neural networks. arXiv preprint arXiv:2105.10862 (2021)."},{"volume-title":"Self-supervised Hypergraph Representation Learning. In 2022 IEEE International Conference on Big Data (Big Data). IEEE, 505--514","year":"2022","author":"Du Boxin","key":"e_1_3_2_1_8_1","unstructured":"Boxin Du , Changhe Yuan , Robert Barton , Tal Neiman , and Hanghang Tong . 2022 . Self-supervised Hypergraph Representation Learning. In 2022 IEEE International Conference on Big Data (Big Data). IEEE, 505--514 . Boxin Du, Changhe Yuan, Robert Barton, Tal Neiman, and Hanghang Tong. 2022. Self-supervised Hypergraph Representation Learning. In 2022 IEEE International Conference on Big Data (Big Data). IEEE, 505--514."},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.1145\/3447548.3470801"},{"key":"e_1_3_2_1_10_1","doi-asserted-by":"publisher","DOI":"10.1145\/3366423.3380297"},{"key":"e_1_3_2_1_11_1","volume-title":"Foundations and Trends\u00ae in Machine Learning","volume":"2","author":"Goldenberg Anna","year":"2010","unstructured":"Anna Goldenberg , Alice X Zheng , Stephen E Fienberg , Edoardo M Airoldi , 2010 . A survey of statistical network models . Foundations and Trends\u00ae in Machine Learning , Vol. 2 , 2 (2010), 129--233. Anna Goldenberg, Alice X Zheng, Stephen E Fienberg, Edoardo M Airoldi, et al. 2010. A survey of statistical network models. Foundations and Trends\u00ae in Machine Learning, Vol. 2, 2 (2010), 129--233."},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2019.06.024"},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"publisher","DOI":"10.1145\/1348549.1348556"},{"key":"e_1_3_2_1_14_1","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2022.3223018"},{"volume-title":"Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907","year":"2016","author":"Kipf Thomas N","key":"e_1_3_2_1_15_1","unstructured":"Thomas N Kipf and Max Welling . 2016. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 ( 2016 ). Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)."},{"key":"e_1_3_2_1_16_1","doi-asserted-by":"publisher","DOI":"10.1145\/3447548.3467375"},{"volume-title":"Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692","year":"2019","author":"Liu Yinhan","key":"e_1_3_2_1_17_1","unstructured":"Yinhan Liu , Myle Ott , Naman Goyal , Jingfei Du , Mandar Joshi , Danqi Chen , Omer Levy , Mike Lewis , Luke Zettlemoyer , and Veselin Stoyanov . 2019 . Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019). Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019)."},{"volume-title":"Do pre-trained models benefit knowledge graph completion? a reliable evaluation and a reasonable approach","author":"Lv Xin","key":"e_1_3_2_1_18_1","unstructured":"Xin Lv , Yankai Lin , Yixin Cao , Lei Hou , Juanzi Li , Zhiyuan Liu , Peng Li , and Jie Zhou . 2022. Do pre-trained models benefit knowledge graph completion? a reliable evaluation and a reasonable approach . Association for Computational Linguistics . Xin Lv, Yankai Lin, Yixin Cao, Lei Hou, Juanzi Li, Zhiyuan Liu, Peng Li, and Jie Zhou. 2022. Do pre-trained models benefit knowledge graph completion? a reliable evaluation and a reasonable approach. Association for Computational Linguistics."},{"volume-title":"Proceedings of the 2004 conference on empirical methods in natural language processing. 404--411","year":"2004","author":"Mihalcea Rada","key":"e_1_3_2_1_19_1","unstructured":"Rada Mihalcea and Paul Tarau . 2004 . Textrank: Bringing order into text . In Proceedings of the 2004 conference on empirical methods in natural language processing. 404--411 . Rada Mihalcea and Paul Tarau. 2004. Textrank: Bringing order into text. In Proceedings of the 2004 conference on empirical methods in natural language processing. 404--411."},{"key":"e_1_3_2_1_20_1","doi-asserted-by":"publisher","DOI":"10.1145\/3394486.3403168"},{"key":"e_1_3_2_1_21_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-93417-4_38"},{"key":"e_1_3_2_1_22_1","first-page":"4","article-title":"Deep graph infomax","volume":"2","author":"Velickovic Petar","year":"2019","unstructured":"Petar Velickovic , William Fedus , William L Hamilton , Pietro Li\u00f2 , Yoshua Bengio , and R Devon Hjelm . 2019 . Deep graph infomax . ICLR (Poster) , Vol. 2 , 3 (2019), 4 . Petar Velickovic, William Fedus, William L Hamilton, Pietro Li\u00f2, Yoshua Bengio, and R Devon Hjelm. 2019. Deep graph infomax. ICLR (Poster), Vol. 2, 3 (2019), 4.","journal-title":"ICLR (Poster)"},{"volume-title":"How powerful are graph neural networks? arXiv preprint arXiv:1810.00826","year":"2018","author":"Xu Keyulu","key":"e_1_3_2_1_23_1","unstructured":"Keyulu Xu , Weihua Hu , Jure Leskovec , and Stefanie Jegelka . 2018. How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 ( 2018 ). Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018)."},{"key":"e_1_3_2_1_24_1","doi-asserted-by":"publisher","DOI":"10.1145\/3485447.3512180"},{"key":"e_1_3_2_1_25_1","doi-asserted-by":"publisher","DOI":"10.1145\/3292500.3330961"},{"volume-title":"Graph-less neural networks: Teaching old mlps new tricks via distillation. arXiv preprint arXiv:2110.08727","year":"2021","author":"Zhang Shichang","key":"e_1_3_2_1_26_1","unstructured":"Shichang Zhang , Yozen Liu , Yizhou Sun , and Neil Shah . 2021. Graph-less neural networks: Teaching old mlps new tricks via distillation. arXiv preprint arXiv:2110.08727 ( 2021 ). Shichang Zhang, Yozen Liu, Yizhou Sun, and Neil Shah. 2021. Graph-less neural networks: Teaching old mlps new tricks via distillation. arXiv preprint arXiv:2110.08727 (2021)."},{"volume-title":"Proceedings of the 31st ACM International Conference on Information & Knowledge Management. 4712--4716","year":"2022","author":"Zhang Zhenning","key":"e_1_3_2_1_27_1","unstructured":"Zhenning Zhang , Boxin Du , and Hanghang Tong . 2022 . Suger: A subgraph-based graph convolutional network method for bundle recommendation . In Proceedings of the 31st ACM International Conference on Information & Knowledge Management. 4712--4716 . Zhenning Zhang, Boxin Du, and Hanghang Tong. 2022. Suger: A subgraph-based graph convolutional network method for bundle recommendation. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management. 4712--4716."},{"key":"e_1_3_2_1_28_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICDM.2019.00201"},{"volume-title":"Adversarial Attacks on Multi-Network Mining: Problem Definition and Fast Solutions","year":"2021","author":"Zhou Qinghai","key":"e_1_3_2_1_29_1","unstructured":"Qinghai Zhou , Liangyue Li , Nan Cao , Lei Ying , and Hanghang Tong . 2021. Adversarial Attacks on Multi-Network Mining: Problem Definition and Fast Solutions . IEEE Transactions on Knowledge and Data Engineering ( 2021 ). Qinghai Zhou, Liangyue Li, Nan Cao, Lei Ying, and Hanghang Tong. 2021. Adversarial Attacks on Multi-Network Mining: Problem Definition and Fast Solutions. IEEE Transactions on Knowledge and Data Engineering (2021)."}],"event":{"name":"CIKM '23: The 32nd ACM International Conference on Information and Knowledge Management","sponsor":["SIGWEB ACM Special Interest Group on Hypertext, Hypermedia, and Web","SIGIR ACM Special Interest Group on Information Retrieval"],"location":"Birmingham United Kingdom","acronym":"CIKM '23"},"container-title":["Proceedings of the 32nd ACM International Conference on Information and Knowledge Management"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3583780.3615472","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,10,21]],"date-time":"2023-10-21T08:12:08Z","timestamp":1697875928000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3583780.3615472"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,10,21]]},"references-count":29,"alternative-id":["10.1145\/3583780.3615472","10.1145\/3583780"],"URL":"https:\/\/doi.org\/10.1145\/3583780.3615472","relation":{},"subject":[],"published":{"date-parts":[[2023,10,21]]},"assertion":[{"value":"2023-10-21","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}