{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,7]],"date-time":"2024-09-07T04:43:07Z","timestamp":1725684187914},"publisher-location":"New York, NY, USA","reference-count":35,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2023,10,21]]},"DOI":"10.1145\/3583780.3615298","type":"proceedings-article","created":{"date-parts":[[2023,10,21]],"date-time":"2023-10-21T07:45:26Z","timestamp":1697874326000},"page":"5212-5215","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":0,"title":["Uplift Modeling: From Causal Inference to Personalization"],"prefix":"10.1145","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-1163-2583","authenticated-orcid":false,"given":"Felipe","family":"Moraes","sequence":"first","affiliation":[{"name":"Booking.com, Amsterdam, Netherlands"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7315-5925","authenticated-orcid":false,"given":"Hugo","family":"Manuel Proen\u00e7a","sequence":"additional","affiliation":[{"name":"Booking.com, Amsterdam, Netherlands"}]},{"ORCID":"http:\/\/orcid.org\/0009-0000-0987-1409","authenticated-orcid":false,"given":"Anastasiia","family":"Kornilova","sequence":"additional","affiliation":[{"name":"Booking.com, Amsterdam, Netherlands"}]},{"ORCID":"http:\/\/orcid.org\/0009-0005-8439-6464","authenticated-orcid":false,"given":"Javier","family":"Albert","sequence":"additional","affiliation":[{"name":"Booking.com, Tel-Aviv, Israel"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6034-9632","authenticated-orcid":false,"given":"Dmitri","family":"Goldenberg","sequence":"additional","affiliation":[{"name":"Booking.com, Tel-Aviv, Israel"}]}],"member":"320","published-online":{"date-parts":[[2023,10,21]]},"reference":[{"doi-asserted-by":"publisher","key":"e_1_3_2_1_1_1","DOI":"10.1145\/3511808.3557100"},{"volume-title":"Machine learning methods for estimating heterogeneous causal effects. stat","year":"2015","author":"Athey Susan","unstructured":"Susan Athey and Guido W Imbens . 2015. Machine learning methods for estimating heterogeneous causal effects. stat , Vol. 1050 , 5 ( 2015 ), 1--26. Susan Athey and Guido W Imbens. 2015. Machine learning methods for estimating heterogeneous causal effects. stat, Vol. 1050, 5 (2015), 1--26.","key":"e_1_3_2_1_2_1"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_3_1","DOI":"10.1145\/3394486.3406460"},{"volume-title":"A literature survey and experimental evaluation of the state-of-the-art in uplift modeling: A stepping stone toward the development of prescriptive analytics. Big data","year":"2018","author":"Devriendt Floris","unstructured":"Floris Devriendt , Darie Moldovan , and Wouter Verbeke . 2018. A literature survey and experimental evaluation of the state-of-the-art in uplift modeling: A stepping stone toward the development of prescriptive analytics. Big data , Vol. 6 , 1 ( 2018 ), 13--41. Floris Devriendt, Darie Moldovan, and Wouter Verbeke. 2018. A literature survey and experimental evaluation of the state-of-the-art in uplift modeling: A stepping stone toward the development of prescriptive analytics. Big data, Vol. 6, 1 (2018), 13--41.","key":"e_1_3_2_1_4_1"},{"unstructured":"Eustache Diemert Artem Betlei Christophe Renaudin and Massih-Reza Amini. 2018. A large scale benchmark for uplift modeling. In KDD. Eustache Diemert Artem Betlei Christophe Renaudin and Massih-Reza Amini. 2018. A large scale benchmark for uplift modeling. In KDD.","key":"e_1_3_2_1_5_1"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_6_1","DOI":"10.1145\/3383313.3412215"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_7_1","DOI":"10.1145\/3437963.3441657"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_8_1","DOI":"10.1016\/j.ejor.2019.11.030"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_9_1","DOI":"10.1057\/palgrave.jdm.3240007"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_10_1","DOI":"10.1016\/j.ejor.2021.05.045"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_11_1","DOI":"10.1080\/01621459.1986.10478354"},{"volume-title":"International conference on machine learning. 3020--3029","year":"2016","author":"Johansson Fredrik","unstructured":"Fredrik Johansson , Uri Shalit , and David Sontag . 2016 . Learning representations for counterfactual inference . In International conference on machine learning. 3020--3029 . Fredrik Johansson, Uri Shalit, and David Sontag. 2016. Learning representations for counterfactual inference. In International conference on machine learning. 3020--3029.","key":"e_1_3_2_1_12_1"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_13_1","DOI":"10.1145\/3570991.3571052"},{"volume-title":"Democratizing online controlled experiments at Booking.com. arXiv preprint arXiv:1710.08217","year":"2017","author":"Kaufman Raphael Lopez","unstructured":"Raphael Lopez Kaufman , Jegar Pitchforth , and Lukas Vermeer . 2017. Democratizing online controlled experiments at Booking.com. arXiv preprint arXiv:1710.08217 ( 2017 ). Raphael Lopez Kaufman, Jegar Pitchforth, and Lukas Vermeer. 2017. Democratizing online controlled experiments at Booking.com. arXiv preprint arXiv:1710.08217 (2017).","key":"e_1_3_2_1_14_1"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_15_1","DOI":"10.1145\/3289600.3291381"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_16_1","DOI":"10.1007\/s11002-006-9309-7"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_17_1","DOI":"10.1145\/3437963.3441812"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_18_1","DOI":"10.1073\/pnas.1804597116"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_19_1","DOI":"10.1109\/ICDM.2006.54"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_20_1","DOI":"10.1145\/3038912.3052616"},{"unstructured":"Christos Louizos Uri Shalit Joris M Mooij David Sontag Richard Zemel and Max Welling. 2017. Causal effect inference with deep latent-variable models. In Advances in Neural Information Processing Systems. 6446--6456. Christos Louizos Uri Shalit Joris M Mooij David Sontag Richard Zemel and Max Welling. 2017. Causal effect inference with deep latent-variable models. In Advances in Neural Information Processing Systems. 6446--6456.","key":"e_1_3_2_1_21_1"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_22_1","DOI":"10.1145\/3298689.3347027"},{"volume-title":"Incremental Profit per Conversion: a Response Transformation for Uplift Modeling in E-Commerce Promotions. arXiv preprint arXiv:2306.13759","year":"2023","author":"Proencca Hugo Manuel","unstructured":"Hugo Manuel Proencca and Felipe Moraes . 2023. Incremental Profit per Conversion: a Response Transformation for Uplift Modeling in E-Commerce Promotions. arXiv preprint arXiv:2306.13759 ( 2023 ). Hugo Manuel Proencca and Felipe Moraes. 2023. Incremental Profit per Conversion: a Response Transformation for Uplift Modeling in E-Commerce Promotions. arXiv preprint arXiv:2306.13759 (2023).","key":"e_1_3_2_1_23_1"},{"volume-title":"Proceedings of the Fourth Workshop on Recommendation in Complex Scenarios. CEUR-WS.","year":"2020","author":"Mavridis Themis","unstructured":"Themis Mavridis , Soraya Hausl , Andrew Mende , and Roberto Pagano . 2020 . Beyond algorithms: Ranking at scale at Booking. com . In Proceedings of the Fourth Workshop on Recommendation in Complex Scenarios. CEUR-WS. Themis Mavridis, Soraya Hausl, Andrew Mende, and Roberto Pagano. 2020. Beyond algorithms: Ranking at scale at Booking. com. In Proceedings of the Fourth Workshop on Recommendation in Complex Scenarios. CEUR-WS.","key":"e_1_3_2_1_24_1"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_25_1","DOI":"10.1007\/s10618-019-00670-y"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_26_1","DOI":"10.1007\/s10115-011-0434-0"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_27_1","DOI":"10.1145\/3371158.3371231"},{"volume-title":"Companion Proceedings of the Web Conference.","year":"2021","author":"Teinemaa Irene","unstructured":"Irene Teinemaa , Javier Albert , and Dmitri Goldenberg . 2021 . Uplift modeling: from causal inference to personalization . In Companion Proceedings of the Web Conference. Irene Teinemaa, Javier Albert, and Dmitri Goldenberg. 2021. Uplift modeling: from causal inference to personalization. In Companion Proceedings of the Web Conference.","key":"e_1_3_2_1_28_1"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_29_1","DOI":"10.1016\/j.ejor.2022.03.049"},{"volume-title":"An End-to-End Framework for Marketing Effectiveness Optimization under Budget Constraint. arXiv preprint arXiv:2302.04477","year":"2023","author":"Yan Ziang","unstructured":"Ziang Yan , Shusen Wang , Guorui Zhou , Jingjian Lin , and Peng Jiang . 2023. An End-to-End Framework for Marketing Effectiveness Optimization under Budget Constraint. arXiv preprint arXiv:2302.04477 ( 2023 ). Ziang Yan, Shusen Wang, Guorui Zhou, Jingjian Lin, and Peng Jiang. 2023. An End-to-End Framework for Marketing Effectiveness Optimization under Budget Constraint. arXiv preprint arXiv:2302.04477 (2023).","key":"e_1_3_2_1_30_1"},{"volume-title":"International Conference on Learning Representations.","author":"Yoon Jinsung","unstructured":"Jinsung Yoon , James Jordon , and Mihaela van der Schaar. 2018. GANITE: Estimation of individualized treatment effects using generative adversarial nets . In International Conference on Learning Representations. Jinsung Yoon, James Jordon, and Mihaela van der Schaar. 2018. GANITE: Estimation of individualized treatment effects using generative adversarial nets. In International Conference on Learning Representations.","key":"e_1_3_2_1_31_1"},{"volume-title":"A unified survey on treatment effect heterogeneity modeling and uplift modeling. arXiv preprint arXiv:2007.12769","year":"2020","author":"Zhang Weijia","unstructured":"Weijia Zhang , Jiuyong Li , and Lin Liu . 2020. A unified survey on treatment effect heterogeneity modeling and uplift modeling. arXiv preprint arXiv:2007.12769 ( 2020 ). Weijia Zhang, Jiuyong Li, and Lin Liu. 2020. A unified survey on treatment effect heterogeneity modeling and uplift modeling. arXiv preprint arXiv:2007.12769 (2020).","key":"e_1_3_2_1_32_1"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_33_1","DOI":"10.1145\/3292500.3330700"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_34_1","DOI":"10.1109\/DSAA.2019.00057"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_35_1","DOI":"10.1007\/978-3-540-92185-1_63"}],"event":{"sponsor":["SIGWEB ACM Special Interest Group on Hypertext, Hypermedia, and Web","SIGIR ACM Special Interest Group on Information Retrieval"],"acronym":"CIKM '23","name":"CIKM '23: The 32nd ACM International Conference on Information and Knowledge Management","location":"Birmingham United Kingdom"},"container-title":["Proceedings of the 32nd ACM International Conference on Information and Knowledge Management"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3583780.3615298","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,10,21]],"date-time":"2023-10-21T07:49:23Z","timestamp":1697874563000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3583780.3615298"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,10,21]]},"references-count":35,"alternative-id":["10.1145\/3583780.3615298","10.1145\/3583780"],"URL":"https:\/\/doi.org\/10.1145\/3583780.3615298","relation":{},"subject":[],"published":{"date-parts":[[2023,10,21]]},"assertion":[{"value":"2023-10-21","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}