{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,22]],"date-time":"2024-10-22T17:55:36Z","timestamp":1729619736432,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":50,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2022,12,23]]},"DOI":"10.1145\/3582197.3582215","type":"proceedings-article","created":{"date-parts":[[2023,3,30]],"date-time":"2023-03-30T22:16:15Z","timestamp":1680214575000},"page":"112-117","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":1,"title":["A Comparison Study of Convolutional Neural Network and Recurrent Neural Network on Image Classification"],"prefix":"10.1145","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-7108-5588","authenticated-orcid":false,"given":"Xiping","family":"Qing","sequence":"first","affiliation":[{"name":"Tongji University, China"}]}],"member":"320","published-online":{"date-parts":[[2023,3,30]]},"reference":[{"key":"e_1_3_2_1_1_1","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2020.3011028"},{"key":"e_1_3_2_1_2_1","doi-asserted-by":"publisher","DOI":"10.1002\/rob.21918"},{"key":"e_1_3_2_1_3_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2018.01.092"},{"key":"e_1_3_2_1_4_1","volume-title":"Overview of deep learning in medical imaging[J]. Radiological physics and technology","author":"Suzuki K.","year":"2017","unstructured":"Suzuki K. Overview of deep learning in medical imaging[J]. Radiological physics and technology , 2017 , 10(3): 257-273. Suzuki K. Overview of deep learning in medical imaging[J]. Radiological physics and technology, 2017, 10(3): 257-273."},{"key":"e_1_3_2_1_5_1","volume-title":"Object detection in 20 years: A survey[J]. arXiv preprint arXiv:1905.05055","author":"Zou Z","year":"2019","unstructured":"Zou Z , Shi Z , Guo Y , Object detection in 20 years: A survey[J]. arXiv preprint arXiv:1905.05055 , 2019 . Zou Z, Shi Z, Guo Y, Object detection in 20 years: A survey[J]. arXiv preprint arXiv:1905.05055, 2019."},{"key":"e_1_3_2_1_6_1","volume-title":"Object tracking methods: A review[C]\/\/2019 9th International Conference on Computer and Knowledge Engineering (ICCKE)","author":"Soleimanitaleb Z","year":"2019","unstructured":"Soleimanitaleb Z , Keyvanrad M A , Jafari A. Object tracking methods: A review[C]\/\/2019 9th International Conference on Computer and Knowledge Engineering (ICCKE) . IEEE , 2019 : 282-288. Soleimanitaleb Z, Keyvanrad M A, Jafari A. Object tracking methods: A review[C]\/\/2019 9th International Conference on Computer and Knowledge Engineering (ICCKE). IEEE, 2019: 282-288."},{"key":"e_1_3_2_1_7_1","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2017.2649541"},{"key":"e_1_3_2_1_8_1","first-page":"156","article-title":"Traffic scene recognition based on deep CNN and VLAD spatial pyramids[C]\/\/2017 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":"1","author":"Wu F Y","year":"2017","unstructured":"Wu F Y , Yan S Y , Smith J S , Traffic scene recognition based on deep CNN and VLAD spatial pyramids[C]\/\/2017 International Conference on Machine Learning and Cybernetics (ICMLC) . IEEE , 2017 , 1 : 156 - 161 . Wu F Y, Yan S Y, Smith J S, Traffic scene recognition based on deep CNN and VLAD spatial pyramids[C]\/\/2017 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2017, 1: 156-161.","journal-title":"IEEE"},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2020.3017505"},{"key":"e_1_3_2_1_10_1","article-title":"Feature Extraction and Image Processing[J]","volume":"2004","author":"Miguel A.","unstructured":"Miguel A. Vega-Rodriguez . Feature Extraction and Image Processing[J] . The Computer Journal , 2004 ,47(2). Miguel A. Vega-Rodriguez. Feature Extraction and Image Processing[J]. The Computer Journal,2004,47(2).","journal-title":"The Computer Journal"},{"key":"e_1_3_2_1_11_1","article-title":"Learning the Classifier Combination for Image Classification[J]","volume":"2011","author":"Deyuan Zhang","unstructured":"Deyuan Zhang ,Bingquan Liu, Chengjie Sun ,Xiaolong Wang . Learning the Classifier Combination for Image Classification[J] . Journal of Computers , 2011 ,6(8). Deyuan Zhang,Bingquan Liu,Chengjie Sun,Xiaolong Wang. Learning the Classifier Combination for Image Classification[J]. Journal of Computers,2011,6(8).","journal-title":"Journal of Computers"},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2007.902329"},{"key":"e_1_3_2_1_13_1","article-title":"image filter based on cellular neural network paradigm[J]","volume":"1999","author":"Kowalski A.","unstructured":"K. lot,J. Kowalski , A. Napieralski , T. Kacprzak . Analogue median\/average image filter based on cellular neural network paradigm[J] . Electronics Letters , 1999 ,35(19). K. lot,J. Kowalski,A. Napieralski,T. Kacprzak. Analogue median\/average image filter based on cellular neural network paradigm[J]. Electronics Letters,1999,35(19).","journal-title":"Electronics Letters"},{"volume-title":"Graphics&Image Processing, 2008. ICVGIP'08.Sixth Indian Conference on. IEEE","author":"Direkoglu C","key":"e_1_3_2_1_14_1","unstructured":"Direkoglu C , Nixon M S . Image-Based Multiscale Shape Description Using Gaussian Filter[C]\u2225Computer Vision , Graphics&Image Processing, 2008. ICVGIP'08.Sixth Indian Conference on. IEEE , 2009: 673-678. Direkoglu C, Nixon M S. Image-Based Multiscale Shape Description Using Gaussian Filter[C]\u2225Computer Vision, Graphics&Image Processing, 2008. ICVGIP'08.Sixth Indian Conference on. IEEE, 2009:673-678."},{"key":"e_1_3_2_1_15_1","volume-title":"Proceedings of the 7th IEEE International Conference onComputer Vision","author":"Object","year":"1999","unstructured":"LOWE D G. Object recognition from local scale-invariant features[C]\/\/ICCV1999 : Proceedings of the 7th IEEE International Conference onComputer Vision . Piscataway : IEEE , 1999 : 1150-1157. LOWE D G.Object recognition from local scale-invariant features[C]\/\/ICCV1999: Proceedings of the 7th IEEE International Conference onComputer Vision. Piscataway: IEEE, 1999:1150-1157."},{"volume-title":"SURF: speeded up robustfeatures[C]\/\/ ECCV2006: Proceedings of the 9th EuropeanConference on Computer Vision","year":"2006","key":"e_1_3_2_1_16_1","unstructured":"BAY H, TUYTELAARS T, GOOL L V. SURF: speeded up robustfeatures[C]\/\/ ECCV2006: Proceedings of the 9th EuropeanConference on Computer Vision . Berlin : Springer , 2006 : 404-417. BAY H, TUYTELAARS T, GOOL L V. SURF: speeded up robustfeatures[C]\/\/ ECCV2006: Proceedings of the 9th EuropeanConference on Computer Vision. Berlin: Springer, 2006:404-417."},{"key":"e_1_3_2_1_17_1","first-page":"886","article-title":"of oriented gradients for humandetection[C]\/\/ Proceedings of the 2005 IEEE Computer SocietyConference on Computer Vision & Pattern Recognition. Washington","volume":"2005","author":"Histograms","unstructured":"DALAL N,TRIGGS B. Histograms of oriented gradients for humandetection[C]\/\/ Proceedings of the 2005 IEEE Computer SocietyConference on Computer Vision & Pattern Recognition. Washington , DC: IEEE Computer Society , 2005 : 886 - 893 . DALAL N,TRIGGS B.Histograms of oriented gradients for humandetection[C]\/\/ Proceedings of the 2005 IEEE Computer SocietyConference on Computer Vision & Pattern Recognition. Washington,DC: IEEE Computer Society, 2005:886-893.","journal-title":"DC: IEEE Computer Society"},{"key":"e_1_3_2_1_18_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2002.1017623"},{"key":"e_1_3_2_1_19_1","first-page":"955","article-title":"part-based one-vs.-one featuresfor fine-grained categorization, face verification, and attribute estimation[C]\/\/ CVPR2013: Proceedings of the 2013 IEEEConference on Computer Vision and Pattern Recognition.Washington","volume":"2013","author":"Poof","unstructured":"BERG T, BELHUMEUR P N. Poof : part-based one-vs.-one featuresfor fine-grained categorization, face verification, and attribute estimation[C]\/\/ CVPR2013: Proceedings of the 2013 IEEEConference on Computer Vision and Pattern Recognition.Washington , DC: IEEE Computer Society , 2013 : 955 - 962 . BERG T, BELHUMEUR P N. Poof: part-based one-vs.-one featuresfor fine-grained categorization, face verification, and attribute estimation[C]\/\/ CVPR2013: Proceedings of the 2013 IEEEConference on Computer Vision and Pattern Recognition.Washington, DC: IEEE Computer Society, 2013:955-962.","journal-title":"DC: IEEE Computer Society"},{"volume-title":"Improving the fisherkernel for large-scale image classification[C]\/\/ ECCV2010:Proceedings of IEEE European Conference on Computer Vision,LNCS 6314","year":"2010","key":"e_1_3_2_1_20_1","unstructured":"DANIILIDIS K, MARAGOS P, PARAGIOS N. Improving the fisherkernel for large-scale image classification[C]\/\/ ECCV2010:Proceedings of IEEE European Conference on Computer Vision,LNCS 6314 . Berlin : Springer , 2010 : 143-156. DANIILIDIS K, MARAGOS P, PARAGIOS N. Improving the fisherkernel for large-scale image classification[C]\/\/ ECCV2010:Proceedings of IEEE European Conference on Computer Vision,LNCS 6314. Berlin: Springer, 2010: 143-156."},{"key":"e_1_3_2_1_21_1","doi-asserted-by":"publisher","DOI":"10.1080\/01431160600746456"},{"key":"e_1_3_2_1_22_1","doi-asserted-by":"publisher","DOI":"10.1109\/TSMC.1985.6313426"},{"key":"e_1_3_2_1_23_1","doi-asserted-by":"publisher","DOI":"10.1007\/BF00994018"},{"key":"e_1_3_2_1_24_1","doi-asserted-by":"publisher","DOI":"10.1038\/nature14539"},{"key":"e_1_3_2_1_25_1","doi-asserted-by":"crossref","unstructured":"Y. LeCun B. Boser J. S. Denker D. Henderson R. E. Howard W. Hubbard L. D. Jackel. Backpropagation Applied to Handwritten Zip Code Recognition[J]. Neural Computation 1989 1(4). Y. LeCun B. Boser J. S. Denker D. Henderson R. E. Howard W. Hubbard L. D. Jackel. Backpropagation Applied to Handwritten Zip Code Recognition[J]. Neural Computation 1989 1(4).","DOI":"10.1162\/neco.1989.1.4.541"},{"key":"e_1_3_2_1_26_1","doi-asserted-by":"crossref","unstructured":"Fukushima K. Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position.[J]. Biological cybernetics 1980 36(4). Fukushima K. Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position.[J]. Biological cybernetics 1980 36(4).","DOI":"10.1007\/BF00344251"},{"key":"e_1_3_2_1_27_1","doi-asserted-by":"crossref","unstructured":"CHEN R WANG M L LAI Y. Analysis of the role and robustness of artificial intelligence in commodity image recognition under deep learning neural network[J]. PLoS ONE 2020 15(7):No. e0235783. CHEN R WANG M L LAI Y. Analysis of the role and robustness of artificial intelligence in commodity image recognition under deep learning neural network[J]. PLoS ONE 2020 15(7):No. e0235783.","DOI":"10.1371\/journal.pone.0235783"},{"key":"e_1_3_2_1_28_1","first-page":"1520","article-title":"Learning deconvolution network for semantic segmentation[C]\/\/Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway","volume":"2015","unstructured":"NOH H,HONG S,HAN B . Learning deconvolution network for semantic segmentation[C]\/\/Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway : IEEE , 2015 : 1520 - 1528 . NOH H,HONG S,HAN B. Learning deconvolution network for semantic segmentation[C]\/\/Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE,2015:1520-1528.","journal-title":"IEEE"},{"key":"e_1_3_2_1_29_1","volume-title":"Impact of automatic feature extraction in deep learning architecture[C]\/\/2016 International conference on digital image computing: techniques and applications (DICTA)","author":"Shaheen F","year":"2016","unstructured":"Shaheen F , Verma B , Asafuddoula M. Impact of automatic feature extraction in deep learning architecture[C]\/\/2016 International conference on digital image computing: techniques and applications (DICTA) . IEEE , 2016 : 1-8. Shaheen F, Verma B, Asafuddoula M. Impact of automatic feature extraction in deep learning architecture[C]\/\/2016 International conference on digital image computing: techniques and applications (DICTA). IEEE, 2016: 1-8."},{"volume-title":"Conference on Computer Vision and Pattern Recognition. IEEE Computer Society","author":"He K","key":"e_1_3_2_1_30_1","unstructured":"He K , Zhang X , Ren S , Deep Residual Learning for Image Recognition[C]\u2225 IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society , 2016: 770-778. He K, Zhang X, Ren S, Deep Residual Learning for Image Recognition[C]\u2225IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2016:770-778."},{"key":"e_1_3_2_1_31_1","doi-asserted-by":"crossref","unstructured":"Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM 2017 60(6). Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM 2017 60(6).","DOI":"10.1145\/3065386"},{"key":"e_1_3_2_1_32_1","first-page":"1","article-title":"Going deeper with convolutions[C]\/\/Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway","volume":"2015","unstructured":"SZEGEDY C,LIU W,JIA Y Q, Going deeper with convolutions[C]\/\/Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway : IEEE , 2015 : 1 - 9 . SZEGEDY C,LIU W,JIA Y Q,et al. Going deeper with convolutions[C]\/\/Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:1-9.","journal-title":"IEEE"},{"key":"e_1_3_2_1_33_1","unstructured":"SIMONYAN K ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB\/OL].(2015-04-10)[2021-06-20]. SIMONYAN K ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB\/OL].(2015-04-10)[2021-06-20]."},{"key":"e_1_3_2_1_34_1","first-page":"770","article-title":"Deep residual learning for image recognition[C]\/\/Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway","volume":"2016","unstructured":"HE K M,ZHANG X Y,REN S Q, Deep residual learning for image recognition[C]\/\/Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway : IEEE , 2016 : 770 - 778 . HE K M,ZHANG X Y,REN S Q,et al. Deep residual learning for image recognition[C]\/\/Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2016:770-778.","journal-title":"IEEE"},{"key":"e_1_3_2_1_35_1","unstructured":"HOWARD A G ZHU M L CHEN B etal MobileNets:efficient convolutional neural networks for mobile vision applications[EB\/OL].(2017-04-17)[2021-06-20]. HOWARD A G ZHU M L CHEN B et al. MobileNets:efficient convolutional neural networks for mobile vision applications[EB\/OL].(2017-04-17)[2021-06-20]."},{"key":"e_1_3_2_1_36_1","doi-asserted-by":"crossref","unstructured":"Ronald J. Williams David Zipser. A Learning Algorithm for Continually Running Fully Recurrent Neural Networks[J]. Neural Computation 1989 1(2). Ronald J. Williams David Zipser. A Learning Algorithm for Continually Running Fully Recurrent Neural Networks[J]. Neural Computation 1989 1(2).","DOI":"10.1162\/neco.1989.1.2.270"},{"key":"e_1_3_2_1_37_1","doi-asserted-by":"crossref","unstructured":"P. Rodriguez J. Wiles and J. L. Elman. A Recurrent Neural Network that Learns to Count[J]. Connection Science 1999 11(1). P. Rodriguez J. Wiles and J. L. Elman. A Recurrent Neural Network that Learns to Count[J]. Connection Science 1999 11(1).","DOI":"10.1080\/095400999116340"},{"key":"e_1_3_2_1_38_1","doi-asserted-by":"crossref","unstructured":"Hochreiter S Schmidhuber J. Long short-term memory.[J]. Neural computation 1997 9(8). Hochreiter S Schmidhuber J. Long short-term memory.[J]. Neural computation 1997 9(8).","DOI":"10.1162\/neco.1997.9.8.1735"},{"key":"e_1_3_2_1_39_1","volume-title":"A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural computation","author":"Yu Y","year":"2019","unstructured":"Yu Y , Si X , Hu C , A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural computation , 2019 , 31(7): 1235-1270. Yu Y, Si X, Hu C, A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural computation, 2019, 31(7): 1235-1270."},{"key":"e_1_3_2_1_40_1","volume-title":"Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation[J]. Computer Science","author":"Cho K","year":"2014","unstructured":"Cho K , Merrienboer B V , Gulcehre C , Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation[J]. Computer Science , 2014 . Cho K, Merrienboer B V, Gulcehre C, Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation[J]. Computer Science, 2014."},{"key":"e_1_3_2_1_41_1","unstructured":"Pierre Sermanet David Eigen Xiang Zhang Micha\u00ebl Mathieu Rob Fergus Yann LeCun. OverFeat: Integrated Recognition Localization and Detection using Convolutional Networks.[J]. CoRR 2013 abs\/1312.6229. Pierre Sermanet David Eigen Xiang Zhang Micha\u00ebl Mathieu Rob Fergus Yann LeCun. OverFeat: Integrated Recognition Localization and Detection using Convolutional Networks.[J]. CoRR 2013 abs\/1312.6229."},{"key":"e_1_3_2_1_42_1","unstructured":"Jonathan Long Evan Shelhamer Trevor Darrell. Fully Convolutional Networks for Semantic Segmentation.[J]. CoRR 2014 abs\/1411.4038. Jonathan Long Evan Shelhamer Trevor Darrell. Fully Convolutional Networks for Semantic Segmentation.[J]. CoRR 2014 abs\/1411.4038."},{"key":"e_1_3_2_1_43_1","article-title":"Deep Recurrent Neural Networks for Hyperspectral Image Classification[J]","volume":"2017","author":"Mou Lichao","unstructured":"Mou Lichao ,Ghamisi Pedram, Zhu Xiao Xiang . Deep Recurrent Neural Networks for Hyperspectral Image Classification[J] . IEEE Transactions on Geoscience and Remote Sensing , 2017 ,55(7). Mou Lichao,Ghamisi Pedram,Zhu Xiao Xiang. Deep Recurrent Neural Networks for Hyperspectral Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing,2017,55(7).","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"key":"e_1_3_2_1_44_1","unstructured":"Francesco Visin Kyle Kastner Kyunghyun Cho Matteo Matteucci Aaron C. Courville Yoshua Bengio. ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks.[J]. CoRR 2015 abs\/1505.00393. Francesco Visin Kyle Kastner Kyunghyun Cho Matteo Matteucci Aaron C. Courville Yoshua Bengio. ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks.[J]. CoRR 2015 abs\/1505.00393."},{"key":"e_1_3_2_1_45_1","doi-asserted-by":"crossref","unstructured":"Jia D Wei D Socher R ImageNet: A large-scale hierarchical image database[C]\/\/ 2009:248-255. Jia D Wei D Socher R ImageNet: A large-scale hierarchical image database[C]\/\/ 2009:248-255.","DOI":"10.1109\/CVPRW.2009.5206848"},{"key":"e_1_3_2_1_46_1","article-title":"ImageNet Large Scale Visual Recognition Challenge[J]","volume":"2015","author":"Olga Russakovsky","unstructured":"Olga Russakovsky ,Jia Deng, Hao Su ,Jonathan Krause, Sanjeev Satheesh ,Sean Ma, Zhiheng Huang ,Andrej Karpathy, Aditya Khosla ,Michael Bernstein, Alexander C. Berg ,Li Fei-Fei . ImageNet Large Scale Visual Recognition Challenge[J] . International Journal of Computer Vision , 2015 ,115(3). Olga Russakovsky,Jia Deng,Hao Su,Jonathan Krause,Sanjeev Satheesh,Sean Ma,Zhiheng Huang,Andrej Karpathy,Aditya Khosla,Michael Bernstein,Alexander C. Berg,Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge[J]. International Journal of Computer Vision,2015,115(3).","journal-title":"International Journal of Computer Vision"},{"key":"e_1_3_2_1_47_1","volume-title":"A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation[C]\/\/ Taylor & Francis","author":"Goutte C","year":"2005","unstructured":"Goutte C , Gaussier E . A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation[C]\/\/ Taylor & Francis . Taylor & Francis , 2005 : 952-952. Goutte C , Gaussier E . A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation[C]\/\/ Taylor & Francis. Taylor & Francis, 2005:952-952."},{"key":"e_1_3_2_1_48_1","article-title":"An introduction to ROC analysis[J]","volume":"2006","author":"Tom Fawcett","unstructured":"Tom Fawcett . An introduction to ROC analysis[J] . Pattern Recognition Letters , 2006 ,27(8). Tom Fawcett. An introduction to ROC analysis[J]. Pattern Recognition Letters,2006,27(8).","journal-title":"Pattern Recognition Letters"},{"key":"e_1_3_2_1_49_1","doi-asserted-by":"crossref","unstructured":"Andrew P. Bradley. The use of the area under the ROC curve in the evaluation of machine learning algorithms[J]. Pattern Recognition 1997 30(7). Andrew P. Bradley. The use of the area under the ROC curve in the evaluation of machine learning algorithms[J]. Pattern Recognition 1997 30(7).","DOI":"10.1016\/S0031-3203(96)00142-2"},{"key":"e_1_3_2_1_50_1","volume-title":"Computer Science","author":"Kingma D","year":"2014","unstructured":"Kingma D , Ba J . Adam : A Method for Stochastic Optimization[J] . Computer Science , 2014 . Kingma D , Ba J . Adam: A Method for Stochastic Optimization[J]. Computer Science, 2014."}],"event":{"name":"ICIT 2022: IoT and Smart City","acronym":"ICIT 2022","location":"Shanghai China"},"container-title":["Proceedings of the 2022 10th International Conference on Information Technology: IoT and Smart City"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3582197.3582215","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,17]],"date-time":"2024-10-17T11:05:17Z","timestamp":1729163117000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3582197.3582215"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,12,23]]},"references-count":50,"alternative-id":["10.1145\/3582197.3582215","10.1145\/3582197"],"URL":"https:\/\/doi.org\/10.1145\/3582197.3582215","relation":{},"subject":[],"published":{"date-parts":[[2022,12,23]]},"assertion":[{"value":"2023-03-30","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}