{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T22:15:22Z","timestamp":1730326522105,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":24,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2022,11,17]]},"DOI":"10.1145\/3581807.3581825","type":"proceedings-article","created":{"date-parts":[[2023,5,22]],"date-time":"2023-05-22T20:02:28Z","timestamp":1684785748000},"page":"121-127","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":0,"title":["MoAFormer: Aggregating Adjacent Window Features into Local Vision Transformer Using Overlapped Attention Mechanism for Volumetric Medical Segmentation"],"prefix":"10.1145","author":[{"ORCID":"http:\/\/orcid.org\/0009-0007-2283-0039","authenticated-orcid":false,"given":"Yixi","family":"Luo","sequence":"first","affiliation":[{"name":"Xiamen University of Technology, China"}]},{"ORCID":"http:\/\/orcid.org\/0009-0008-2015-277X","authenticated-orcid":false,"given":"Huayi","family":"Yin","sequence":"additional","affiliation":[{"name":"Xiamen University of Technology, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6298-846X","authenticated-orcid":false,"given":"Xia","family":"Du","sequence":"additional","affiliation":[{"name":"Xiamen University of Technology, China"}]}],"member":"320","published-online":{"date-parts":[[2023,5,22]]},"reference":[{"key":"e_1_3_2_1_1_1","volume-title":"o. I. Helfroush, and Graphics, \"Modified Density-Based Data Clustering for Interactive Liver Segmentation,\" no. 1","author":"Borzooie H.","year":"2018","unstructured":"N. Borzooie , H. Danyali , M. S. J. J. o. I. Helfroush, and Graphics, \"Modified Density-Based Data Clustering for Interactive Liver Segmentation,\" no. 1 , 2018 . N. Borzooie, H. Danyali, M. S. J. J. o. I. Helfroush, and Graphics, \"Modified Density-Based Data Clustering for Interactive Liver Segmentation,\" no. 1, 2018."},{"key":"e_1_3_2_1_2_1","volume-title":"o. I. Kamiy, and Graphics, \"A Supervoxel Classification Based Method for Multi-organ Segmentation from Abdominal CT Images,\" no. 1","author":"Wu G.","year":"2021","unstructured":"J. Wu , G. Li , H. Lu , T. J. J. o. I. Kamiy, and Graphics, \"A Supervoxel Classification Based Method for Multi-organ Segmentation from Abdominal CT Images,\" no. 1 , 2021 . J. Wu, G. Li, H. Lu, T. J. J. o. I. Kamiy, and Graphics, \"A Supervoxel Classification Based Method for Multi-organ Segmentation from Abdominal CT Images,\" no. 1, 2021."},{"key":"e_1_3_2_1_3_1","first-page":"157","volume-title":"o. I. Rizzi, and Graphics, \"Fuzzy Color Image Segmentation using Watershed Transform","author":"Richard C.","year":"2013","unstructured":"N. Richard , C. Fernandez-Maloigne , C. Bonanomi , A. J. J. o. I. Rizzi, and Graphics, \"Fuzzy Color Image Segmentation using Watershed Transform ,\" pp. 157 - 160 , 2013 . N. Richard, C. Fernandez-Maloigne, C. Bonanomi, A. J. J. o. I. Rizzi, and Graphics, \"Fuzzy Color Image Segmentation using Watershed Transform,\" pp. 157-160, 2013."},{"key":"e_1_3_2_1_4_1","volume-title":"abs\/1706.03762","author":"Vaswani","year":"2017","unstructured":"A. Vaswani , \"Attention is All you Need,\" vol. abs\/1706.03762 , 2017 . A. Vaswani , \"Attention is All you Need,\" vol. abs\/1706.03762, 2017."},{"key":"e_1_3_2_1_5_1","volume-title":"Transformers for Image Recognition at Scale","author":"Dosovitskiy","year":"1929","unstructured":"A. Dosovitskiy , \"An Image is Worth 16x16 Words : Transformers for Image Recognition at Scale ,\" vol. abs\/ 2010 .1 1929 , 2021. A. Dosovitskiy , \"An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale,\" vol. abs\/2010.11929, 2021."},{"key":"e_1_3_2_1_6_1","first-page":"9992","volume-title":"Hierarchical Vision Transformer using Shifted Windows","author":"Liu","year":"2021","unstructured":"Z. Liu , \"Swin Transformer : Hierarchical Vision Transformer using Shifted Windows ,\" pp. 9992 - 10002 , 2021 . Z. Liu , \"Swin Transformer: Hierarchical Vision Transformer using Shifted Windows,\" pp. 9992-10002, 2021."},{"key":"e_1_3_2_1_7_1","volume-title":"abs\/2201.12903","author":"Patel A. M.","year":"2022","unstructured":"K. Patel , A. M. Bur , F. Li , and G. J. A. Wang , \"Aggregating Global Features into Local Vision Transformer,\" vol. abs\/2201.12903 , 2022 . K. Patel, A. M. Bur, F. Li, and G. J. A. Wang, \"Aggregating Global Features into Local Vision Transformer,\" vol. abs\/2201.12903, 2022."},{"key":"e_1_3_2_1_8_1","volume-title":"The Cancer Imaging Archive","author":"An","year":"2020","unstructured":"P. An , Xu, S., Harmon , S. A. , Turkbey , E. B. , Sanford , T. H. , Amalou , A. , Kassin , M. , Varble , N. , Blain , M. , Anderson , V. , Patella , F. , Carrafiello , G. , Turkbey , B. T. , & Wood , B. J. , \"CT Images in COVID-19 [Data set]. The Cancer Imaging Archive .,\" 2020 . P. An, Xu, S., Harmon, S. A., Turkbey, E. B., Sanford, T. H., Amalou, A., Kassin, M., Varble, N., Blain, M., Anderson, V., Patella, F., Carrafiello, G., Turkbey, B. T., & Wood, B. J., \"CT Images in COVID-19 [Data set]. The Cancer Imaging Archive.,\" 2020."},{"key":"e_1_3_2_1_9_1","volume-title":"U-Net: Convolutional Networks for Biomedical Image Segmentation,\" in MICCAI","author":"Ronneberger P.","year":"2015","unstructured":"O. Ronneberger , P. Fischer , and T. Brox , \" U-Net: Convolutional Networks for Biomedical Image Segmentation,\" in MICCAI , 2015 . O. Ronneberger, P. Fischer, and T. Brox, \"U-Net: Convolutional Networks for Biomedical Image Segmentation,\" in MICCAI, 2015."},{"key":"e_1_3_2_1_10_1","volume-title":"a. e.-p. Ronneberger, \"3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation","author":"\u00c7i\u00e7ek A.","year":"2016","unstructured":"\u00d6. \u00c7i\u00e7ek , A. Abdulkadir , S. S. Lienkamp , T. Brox , and O. J. a. e.-p. Ronneberger, \"3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation ,\" p. arXiv:1606.06650Accessed on: June 01, 2016 Available: https:\/\/ui.adsabs.harvard.edu\/abs\/2016arXiv160606650C \u00d6. \u00c7i\u00e7ek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. J. a. e.-p. Ronneberger, \"3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation,\" p. arXiv:1606.06650Accessed on: June 01, 2016Available: https:\/\/ui.adsabs.harvard.edu\/abs\/2016arXiv160606650C"},{"key":"e_1_3_2_1_11_1","first-page":"640","volume":"39","author":"Shelhamer J.","year":"2017","unstructured":"E. Shelhamer , J. Long , T. J. I. T. o. P. A. Darrell , and M. Intelligence , \"Fully Convolutional Networks for Semantic Segmentation,\" vol. 39 , pp. 640 - 651 , 2017 . E. Shelhamer, J. Long, T. J. I. T. o. P. A. Darrell, and M. Intelligence, \"Fully Convolutional Networks for Semantic Segmentation,\" vol. 39, pp. 640-651, 2017.","journal-title":"\"Fully Convolutional Networks for Semantic Segmentation,\""},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"crossref","unstructured":"K. Kamnitsas \"Efficient multi\u2010scale 3D CNN with fully connected CRF for accurate brain lesion segmentation \" vol. 36 pp. 61\u201378 2017. K. Kamnitsas \"Efficient multi\u2010scale 3D CNN with fully connected CRF for accurate brain lesion segmentation \" vol. 36 pp. 61\u201378 2017.","DOI":"10.1016\/j.media.2016.10.004"},{"volume-title":"a. e.-p. Myronenko, \"3D MRI brain tumor segmentation using autoencoder regularization","year":"1810","key":"e_1_3_2_1_13_1","unstructured":"A. J. a. e.-p. Myronenko, \"3D MRI brain tumor segmentation using autoencoder regularization ,\" p. arXiv: 1810 .11654Accessed on: October 01, 2018Available: https:\/\/ui.adsabs.harvard.edu\/abs\/2018arXiv181011654M A. J. a. e.-p. Myronenko, \"3D MRI brain tumor segmentation using autoencoder regularization,\" p. arXiv:1810.11654Accessed on: October 01, 2018Available: https:\/\/ui.adsabs.harvard.edu\/abs\/2018arXiv181011654M"},{"key":"e_1_3_2_1_14_1","volume-title":"Two-Stage Cascaded U-Net: 1st Place Solution to BraTS Challenge 2019 Segmentation Task","author":"Jiang C.","year":"2020","unstructured":"Z. Jiang , C. Ding , M. Liu , and D. Tao , \" Two-Stage Cascaded U-Net: 1st Place Solution to BraTS Challenge 2019 Segmentation Task ,\" 2020 . Z. Jiang, C. Ding, M. Liu, and D. Tao, \"Two-Stage Cascaded U-Net: 1st Place Solution to BraTS Challenge 2019 Segmentation Task,\" 2020."},{"key":"e_1_3_2_1_15_1","volume-title":"Breaking the Spell on Successful Medical Image Segmentation","author":"Isensee J.","year":"2019","unstructured":"F. Isensee , J. Petersen , S. A. A. Kohl , P. F. J\u00e4ger , and K. J. A. Maier-Hein , \"nnU-Net : Breaking the Spell on Successful Medical Image Segmentation ,\" vol. abs\/ 1904 .08128, 2019 . F. Isensee, J. Petersen, S. A. A. Kohl, P. F. J\u00e4ger, and K. J. A. Maier-Hein, \"nnU-Net: Breaking the Spell on Successful Medical Image Segmentation,\" vol. abs\/1904.08128, 2019."},{"key":"e_1_3_2_1_16_1","first-page":"1748","volume-title":"o. A. o. C. V. Xu, \"UNETR: Transformers for 3D Medical Image Segmentation","author":"Hatamizadeh D.","year":"2022","unstructured":"A. Hatamizadeh , D. Yang , H. R. Roth , and D. J. I. C. W. C. o. A. o. C. V. Xu, \"UNETR: Transformers for 3D Medical Image Segmentation ,\" pp. 1748 - 1758 , 2022 . A. Hatamizadeh, D. Yang, H. R. Roth, and D. J. I. C. W. C. o. A. o. C. V. Xu, \"UNETR: Transformers for 3D Medical Image Segmentation,\" pp. 1748-1758, 2022."},{"key":"e_1_3_2_1_17_1","volume-title":"Unet-like Pure Transformer for Medical Image Segmentation","author":"Cao","year":"2021","unstructured":"H. Cao , \"Swin-Unet : Unet-like Pure Transformer for Medical Image Segmentation ,\" vol. abs\/ 2105 .05537, 2021 . H. Cao , \"Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation,\" vol. abs\/2105.05537, 2021."},{"key":"e_1_3_2_1_18_1","volume-title":"Transformers Make Strong Encoders for Medical Image Segmentation","author":"Chen","year":"2021","unstructured":"J. Chen , \"TransUNet : Transformers Make Strong Encoders for Medical Image Segmentation ,\" vol. abs\/ 2102 .04306, 2021 . J. Chen , \"TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation,\" vol. abs\/2102.04306, 2021."},{"key":"e_1_3_2_1_19_1","volume-title":"Dual Swin Transformer U-Net for Medical Image Segmentation","author":"Lin B.","year":"2022","unstructured":"A.-J. Lin , B. Chen , J. Xu , Z. Zhang , and G. J. A. Lu , \"DS-TransUNet : Dual Swin Transformer U-Net for Medical Image Segmentation ,\" vol. abs\/ 2106 .06716, 2022 . A.-J. Lin, B. Chen, J. Xu, Z. Zhang, and G. J. A. Lu, \"DS-TransUNet: Dual Swin Transformer U-Net for Medical Image Segmentation,\" vol. abs\/2106.06716, 2022."},{"key":"e_1_3_2_1_20_1","volume-title":"Convolution-Free Medical Image Segmentation using Transformers,\" in MICCAI","author":"Karimi S. D.","year":"2021","unstructured":"D. Karimi , S. D. Vasylechko , and A. Gholipour , \" Convolution-Free Medical Image Segmentation using Transformers,\" in MICCAI , 2021 . D. Karimi, S. D. Vasylechko, and A. Gholipour, \"Convolution-Free Medical Image Segmentation using Transformers,\" in MICCAI, 2021."},{"key":"e_1_3_2_1_21_1","volume-title":"Interleaved Transformer for Volumetric Segmentation","author":"Zhou J.","year":"2021","unstructured":"H.-Y. Zhou , J. Guo , Y. Zhang , L. Yu , L. Wang , and Y. J. A. Yu , \"nnFormer : Interleaved Transformer for Volumetric Segmentation ,\" vol. abs\/ 2109 .03201, 2021 . H.-Y. Zhou, J. Guo, Y. Zhang, L. Yu, L. Wang, and Y. J. A. Yu, \"nnFormer: Interleaved Transformer for Volumetric Segmentation,\" vol. abs\/2109.03201, 2021."},{"key":"e_1_3_2_1_22_1","first-page":"1","volume-title":"Is the Problem Solved?","author":"Bernard MRI","year":"2018","unstructured":"O. Bernard , \"Deep Learning Techniques for Automatic MRI Cardiac Multi -structures Segmentation and Diagnosis : Is the Problem Solved? ,\" pp. 1 - 1 , 2018 . O. Bernard , \"Deep Learning Techniques for Automatic MRI Cardiac Multi-structures Segmentation and Diagnosis: Is the Problem Solved?,\" pp. 1-1, 2018."},{"key":"e_1_3_2_1_23_1","volume-title":"\"\u201c2015 MICCAI Multi-Atlas Labeling Beyond the Cranial Vault \u2013 Workshop and Challenge.\u201d,\"","author":"Bennett Landman","year":"2015","unstructured":"Z. X. Bennett Landman , Juan Eugenio Igelsias , Martin Styner, Thomas Robin Langerak, Arno Klein. (eds.), \"\u201c2015 MICCAI Multi-Atlas Labeling Beyond the Cranial Vault \u2013 Workshop and Challenge.\u201d,\" 2015 . Z. X. Bennett Landman, Juan Eugenio Igelsias, Martin Styner, Thomas Robin Langerak, Arno Klein. (eds.), \"\u201c2015 MICCAI Multi-Atlas Labeling Beyond the Cranial Vault \u2013 Workshop and Challenge.\u201d,\" 2015."},{"key":"e_1_3_2_1_24_1","volume-title":"Looking Wider to See Better","author":"Liu A.","year":"2015","unstructured":"W. Liu , A. Rabinovich , and A. C. J. A. Berg , \"ParseNet : Looking Wider to See Better ,\" vol. abs\/ 1506 .04579, 2015 . W. Liu, A. Rabinovich, and A. C. J. A. Berg, \"ParseNet: Looking Wider to See Better,\" vol. abs\/1506.04579, 2015."}],"event":{"name":"ICCPR 2022: 2022 11th International Conference on Computing and Pattern Recognition","acronym":"ICCPR 2022","location":"Beijing China"},"container-title":["Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3581807.3581825","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,5,22]],"date-time":"2023-05-22T20:18:09Z","timestamp":1684786689000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3581807.3581825"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,11,17]]},"references-count":24,"alternative-id":["10.1145\/3581807.3581825","10.1145\/3581807"],"URL":"https:\/\/doi.org\/10.1145\/3581807.3581825","relation":{},"subject":[],"published":{"date-parts":[[2022,11,17]]},"assertion":[{"value":"2023-05-22","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}