{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T01:40:42Z","timestamp":1740102042561,"version":"3.37.3"},"publisher-location":"New York, NY, USA","reference-count":62,"publisher":"ACM","funder":[{"name":"Natural Science Foundation of China","award":["61832001,U22B2037"]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2023,8,6]]},"DOI":"10.1145\/3580305.3599953","type":"proceedings-article","created":{"date-parts":[[2023,8,4]],"date-time":"2023-08-04T18:13:58Z","timestamp":1691172838000},"page":"4800-4812","update-policy":"https:\/\/doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":2,"title":["Rover: An Online Spark SQL Tuning Service via Generalized Transfer Learning"],"prefix":"10.1145","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-6503-6504","authenticated-orcid":false,"given":"Yu","family":"Shen","sequence":"first","affiliation":[{"name":"Peking University & ByteDance Inc., Beijing, China"}]},{"ORCID":"https:\/\/orcid.org\/0009-0008-2887-3125","authenticated-orcid":false,"given":"Xinyuyang","family":"Ren","sequence":"additional","affiliation":[{"name":"ByteDance Inc., Beijing, China"}]},{"ORCID":"https:\/\/orcid.org\/0009-0001-0819-6445","authenticated-orcid":false,"given":"Yupeng","family":"Lu","sequence":"additional","affiliation":[{"name":"Peking University & ByteDance Inc., Beijing, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-1566-4849","authenticated-orcid":false,"given":"Huaijun","family":"Jiang","sequence":"additional","affiliation":[{"name":"Peking University & ByteDance Inc., Beijing, China"}]},{"ORCID":"https:\/\/orcid.org\/0009-0006-6735-0816","authenticated-orcid":false,"given":"Huanyong","family":"Xu","sequence":"additional","affiliation":[{"name":"ByteDance Inc., Beijing, China"}]},{"ORCID":"https:\/\/orcid.org\/0009-0007-8969-3702","authenticated-orcid":false,"given":"Di","family":"Peng","sequence":"additional","affiliation":[{"name":"ByteDance Inc., Beijing, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-5249-1807","authenticated-orcid":false,"given":"Yang","family":"Li","sequence":"additional","affiliation":[{"name":"Peking University, Beijing, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-7532-5550","authenticated-orcid":false,"given":"Wentao","family":"Zhang","sequence":"additional","affiliation":[{"name":"Mila - Qu\u00e9bec AI Institute, Montr\u00e9al, Canada"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-1681-4677","authenticated-orcid":false,"given":"Bin","family":"Cui","sequence":"additional","affiliation":[{"name":"Peking University & Peking University (Qingdao), Beijing, China"}]}],"member":"320","published-online":{"date-parts":[[2023,8,4]]},"reference":[{"key":"e_1_3_2_2_1_1","volume-title":"14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17)","author":"Alipourfard Omid","year":"2017","unstructured":"Omid Alipourfard , Hongqiang Harry Liu , Jianshu Chen , Shivaram Venkataraman , Minlan Yu , and Ming Zhang . 2017 . {CherryPick}: Adaptively Unearthing the Best Cloud Configurations for Big Data Analytics . In 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17) . 469--482. Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman, Minlan Yu, and Ming Zhang. 2017. {CherryPick}: Adaptively Unearthing the Best Cloud Configurations for Big Data Analytics. In 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17). 469--482."},{"key":"e_1_3_2_2_2_1","doi-asserted-by":"publisher","DOI":"10.1145\/2723372.2742797"},{"key":"e_1_3_2_2_3_1","volume-title":"Transfer Learning for Bayesian Optimization: A Survey. arXiv preprint arXiv:2302.05927","author":"Bai Tianyi","year":"2023","unstructured":"Tianyi Bai , Yang Li , Yu Shen , Xinyi Zhang , Wentao Zhang , and Bin Cui . 2023. Transfer Learning for Bayesian Optimization: A Survey. arXiv preprint arXiv:2302.05927 ( 2023 ). Tianyi Bai, Yang Li, Yu Shen, Xinyi Zhang, Wentao Zhang, and Bin Cui. 2023. Transfer Learning for Bayesian Optimization: A Survey. arXiv preprint arXiv:2302.05927 (2023)."},{"key":"e_1_3_2_2_4_1","doi-asserted-by":"publisher","DOI":"10.1109\/BigData.2018.8622018"},{"key":"e_1_3_2_2_5_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPDS.2015.2449299"},{"key":"e_1_3_2_2_6_1","unstructured":"James S Bergstra R\u00e9mi Bardenet Yoshua Bengio and Bal\u00e1zs K\u00e9gl. 2011. Algorithms for hyper-parameter optimization. In Advances in neural information processing systems. 2546--2554. James S Bergstra R\u00e9mi Bardenet Yoshua Bengio and Bal\u00e1zs K\u00e9gl. 2011. Algorithms for hyper-parameter optimization. In Advances in neural information processing systems. 2546--2554."},{"key":"e_1_3_2_2_7_1","volume-title":"When does diversity help generalization in classification ensembles? IEEE Transactions on Cybernetics","author":"Bian Yijun","year":"2021","unstructured":"Yijun Bian and Huanhuan Chen . 2021. When does diversity help generalization in classification ensembles? IEEE Transactions on Cybernetics ( 2021 ). Yijun Bian and Huanhuan Chen. 2021. When does diversity help generalization in classification ensembles? IEEE Transactions on Cybernetics (2021)."},{"key":"e_1_3_2_2_8_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jss.2021.111028"},{"key":"e_1_3_2_2_9_1","volume-title":"CatBoost: gradient boosting with categorical features support. arXiv preprint arXiv:1810.11363","author":"Dorogush Anna Veronika","year":"2018","unstructured":"Anna Veronika Dorogush , Vasily Ershov , and Andrey Gulin . 2018. CatBoost: gradient boosting with categorical features support. arXiv preprint arXiv:1810.11363 ( 2018 ). Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. 2018. CatBoost: gradient boosting with categorical features support. arXiv preprint arXiv:1810.11363 (2018)."},{"key":"e_1_3_2_2_10_1","volume-title":"Tuneful: An online significance-aware configuration tuner for big data analytics. arXiv preprint arXiv:2001.08002","author":"Fekry Ayat","year":"2020","unstructured":"Ayat Fekry , Lucian Carata , Thomas Pasquier , Andrew Rice , and Andy Hopper . 2020 . Tuneful: An online significance-aware configuration tuner for big data analytics. arXiv preprint arXiv:2001.08002 (2020). Ayat Fekry, Lucian Carata, Thomas Pasquier, Andrew Rice, and Andy Hopper. 2020. Tuneful: An online significance-aware configuration tuner for big data analytics. arXiv preprint arXiv:2001.08002 (2020)."},{"key":"e_1_3_2_2_11_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11390-020-0555-6"},{"key":"e_1_3_2_2_12_1","unstructured":"Matthias Feurer Aaron Klein Katharina Eggensperger Jost Springenberg Manuel Blum and Frank Hutter. 2015a. Efficient and robust automated machine learning. In Advances in neural information processing systems. 2962--2970. Matthias Feurer Aaron Klein Katharina Eggensperger Jost Springenberg Manuel Blum and Frank Hutter. 2015a. Efficient and robust automated machine learning. In Advances in neural information processing systems. 2962--2970."},{"key":"e_1_3_2_2_13_1","volume-title":"AutoML Workshop at ICML.","author":"Feurer Matthias","year":"2018","unstructured":"Matthias Feurer , Benjamin Letham , and Eytan Bakshy . 2018 . Scalable meta-learning for bayesian optimization using ranking-weighted gaussian process ensembles . In AutoML Workshop at ICML. Matthias Feurer, Benjamin Letham, and Eytan Bakshy. 2018. Scalable meta-learning for bayesian optimization using ranking-weighted gaussian process ensembles. In AutoML Workshop at ICML."},{"key":"e_1_3_2_2_14_1","volume-title":"Jost Tobias Springenberg, and Frank Hutter","author":"Feurer Matthias","year":"2015","unstructured":"Matthias Feurer , Jost Tobias Springenberg, and Frank Hutter . 2015 b. Initializing Bayesian Hyperparameter Optimization via Meta-Learning.. In AAAI. 1128--1135. Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. 2015b. Initializing Bayesian Hyperparameter Optimization via Meta-Learning.. In AAAI. 1128--1135."},{"key":"e_1_3_2_2_15_1","doi-asserted-by":"publisher","DOI":"10.14778\/1687553.1687568"},{"key":"e_1_3_2_2_16_1","volume-title":"Bayesian optimization with unknown constraints. arXiv preprint arXiv:1403.5607","author":"Gelbart Michael A","year":"2014","unstructured":"Michael A Gelbart , Jasper Snoek , and Ryan P Adams . 2014. Bayesian optimization with unknown constraints. arXiv preprint arXiv:1403.5607 ( 2014 ). Michael A Gelbart, Jasper Snoek, and Ryan P Adams. 2014. Bayesian optimization with unknown constraints. arXiv preprint arXiv:1403.5607 (2014)."},{"key":"e_1_3_2_2_17_1","doi-asserted-by":"publisher","DOI":"10.1145\/3097983.3098043"},{"key":"e_1_3_2_2_18_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPDS.2017.2647939"},{"key":"e_1_3_2_2_19_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11432-020-3162-4"},{"key":"e_1_3_2_2_20_1","doi-asserted-by":"publisher","DOI":"10.1145\/3381027"},{"key":"e_1_3_2_2_21_1","first-page":"261","article-title":"Starfish: A self-tuning system for big data analytics","volume":"11","author":"Herodotou Herodotos","year":"2011","unstructured":"Herodotos Herodotou , Harold Lim , Gang Luo , Nedyalko Borisov , Liang Dong , Fatma Bilgen Cetin , and Shivnath Babu . 2011 . Starfish: A self-tuning system for big data analytics .. In Cidr , Vol. 11. 261 -- 272 . Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang Dong, Fatma Bilgen Cetin, and Shivnath Babu. 2011. Starfish: A self-tuning system for big data analytics.. In Cidr, Vol. 11. 261--272.","journal-title":"Cidr"},{"key":"e_1_3_2_2_22_1","volume-title":"Dimensionality Reduction in Surrogate Modeling: A Review of Combined Methods. Data Science and Engineering","author":"Jeffery Hou Chun Kit","year":"2022","unstructured":"Chun Kit Jeffery Hou and Kamran Behdinan . 2022. Dimensionality Reduction in Surrogate Modeling: A Review of Combined Methods. Data Science and Engineering ( 2022 ), 1--26. Chun Kit Jeffery Hou and Kamran Behdinan. 2022. Dimensionality Reduction in Surrogate Modeling: A Review of Combined Methods. Data Science and Engineering (2022), 1--26."},{"key":"e_1_3_2_2_23_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICDEW.2010.5452747"},{"key":"e_1_3_2_2_24_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-25566-3_40"},{"key":"e_1_3_2_2_25_1","doi-asserted-by":"publisher","DOI":"10.1145\/3318464.3380591"},{"key":"e_1_3_2_2_26_1","doi-asserted-by":"publisher","DOI":"10.1145\/2371536.2371547"},{"key":"e_1_3_2_2_27_1","doi-asserted-by":"publisher","DOI":"10.1007\/s41019-020-00149-7"},{"key":"e_1_3_2_2_28_1","doi-asserted-by":"publisher","DOI":"10.14778\/3352063.3352129"},{"key":"e_1_3_2_2_29_1","volume-title":"Transfer Learning based Search Space Design for Hyperparameter Tuning. arXiv preprint arXiv:2206.02511","author":"Li Yang","year":"2022","unstructured":"Yang Li , Yu Shen , Huaijun Jiang , Tianyi Bai , Wentao Zhang , Ce Zhang , and Bin Cui . 2022a. Transfer Learning based Search Space Design for Hyperparameter Tuning. arXiv preprint arXiv:2206.02511 ( 2022 ). Yang Li, Yu Shen, Huaijun Jiang, Tianyi Bai, Wentao Zhang, Ce Zhang, and Bin Cui. 2022a. Transfer Learning based Search Space Design for Hyperparameter Tuning. arXiv preprint arXiv:2206.02511 (2022)."},{"key":"e_1_3_2_2_30_1","volume-title":"TransBO: Hyperparameter Optimization via Two-Phase Transfer Learning. arXiv preprint arXiv:2206.02663","author":"Li Yang","year":"2022","unstructured":"Yang Li , Yu Shen , Huaijun Jiang , Wentao Zhang , Zhi Yang , Ce Zhang , and Bin Cui . 2022b. TransBO: Hyperparameter Optimization via Two-Phase Transfer Learning. arXiv preprint arXiv:2206.02663 ( 2022 ). Yang Li, Yu Shen, Huaijun Jiang, Wentao Zhang, Zhi Yang, Ce Zhang, and Bin Cui. 2022b. TransBO: Hyperparameter Optimization via Two-Phase Transfer Learning. arXiv preprint arXiv:2206.02663 (2022)."},{"key":"e_1_3_2_2_31_1","doi-asserted-by":"publisher","DOI":"10.1145\/3447548.3467061"},{"key":"e_1_3_2_2_32_1","volume-title":"From local explanations to global understanding with explainable AI for trees. Nature machine intelligence","author":"Lundberg Scott M","year":"2020","unstructured":"Scott M Lundberg , Gabriel Erion , Hugh Chen , Alex DeGrave , Jordan M Prutkin , Bala Nair , Ronit Katz , Jonathan Himmelfarb , Nisha Bansal , and Su-In Lee . 2020. From local explanations to global understanding with explainable AI for trees. Nature machine intelligence , Vol. 2 , 1 ( 2020 ), 56--67. Scott M Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M Prutkin, Bala Nair, Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. 2020. From local explanations to global understanding with explainable AI for trees. Nature machine intelligence, Vol. 2, 1 (2020), 56--67."},{"key":"e_1_3_2_2_33_1","doi-asserted-by":"publisher","DOI":"10.1145\/3183713.3196908"},{"key":"e_1_3_2_2_34_1","volume-title":"Scalable hyperparameter transfer learning. Advances in neural information processing systems","author":"Perrone Valerio","year":"2018","unstructured":"Valerio Perrone , Rodolphe Jenatton , Matthias W Seeger , and C\u00e9dric Archambeau . 2018. Scalable hyperparameter transfer learning. Advances in neural information processing systems , Vol. 31 ( 2018 ). Valerio Perrone, Rodolphe Jenatton, Matthias W Seeger, and C\u00e9dric Archambeau. 2018. Scalable hyperparameter transfer learning. Advances in neural information processing systems, Vol. 31 (2018)."},{"key":"e_1_3_2_2_35_1","volume-title":"To tune or not to tune? adapting pretrained representations to diverse tasks. arXiv preprint arXiv:1903.05987","author":"Peters Matthew E","year":"2019","unstructured":"Matthew E Peters , Sebastian Ruder , and Noah A Smith . 2019. To tune or not to tune? adapting pretrained representations to diverse tasks. arXiv preprint arXiv:1903.05987 ( 2019 ). Matthew E Peters, Sebastian Ruder, and Noah A Smith. 2019. To tune or not to tune? adapting pretrained representations to diverse tasks. arXiv preprint arXiv:1903.05987 (2019)."},{"key":"e_1_3_2_2_36_1","volume-title":"INNS Conference on Big Data. Springer, 226--237","author":"Petridis Panagiotis","year":"2016","unstructured":"Panagiotis Petridis , Anastasios Gounaris , and Jordi Torres . 2016 . Spark parameter tuning via trial-and-error . In INNS Conference on Big Data. Springer, 226--237 . Panagiotis Petridis, Anastasios Gounaris, and Jordi Torres. 2016. Spark parameter tuning via trial-and-error. In INNS Conference on Big Data. Springer, 226--237."},{"key":"e_1_3_2_2_37_1","doi-asserted-by":"publisher","DOI":"10.1109\/TNSM.2020.3034824"},{"key":"e_1_3_2_2_38_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICDE.2019.00196"},{"key":"e_1_3_2_2_39_1","first-page":"2958","article-title":"DivBO: Diversity-aware CASH for Ensemble Learning","volume":"35","author":"Shen Yu","year":"2022","unstructured":"Yu Shen , Yupeng Lu , Yang Li , Yaofeng Tu , Wentao Zhang , and Bin Cui . 2022 . DivBO: Diversity-aware CASH for Ensemble Learning . Advances in Neural Information Processing Systems , Vol. 35 (2022), 2958 -- 2971 . Yu Shen, Yupeng Lu, Yang Li, Yaofeng Tu, Wentao Zhang, and Bin Cui. 2022. DivBO: Diversity-aware CASH for Ensemble Learning. Advances in Neural Information Processing Systems, Vol. 35 (2022), 2958--2971.","journal-title":"Advances in Neural Information Processing Systems"},{"key":"e_1_3_2_2_40_1","doi-asserted-by":"publisher","DOI":"10.1109\/TBDATA.2019.2908188"},{"key":"e_1_3_2_2_41_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-72401-0_10"},{"key":"e_1_3_2_2_42_1","unstructured":"Jasper Snoek Hugo Larochelle and Ryan P Adams. 2012. Practical bayesian optimization of machine learning algorithms. In Advances in neural information processing systems. 2951--2959. Jasper Snoek Hugo Larochelle and Ryan P Adams. 2012. Practical bayesian optimization of machine learning algorithms. In Advances in neural information processing systems. 2951--2959."},{"key":"e_1_3_2_2_43_1","unstructured":"SparkConf. 2022. Configuration - Spark 3.2.1 Documentation. https:\/\/spark.apache.org\/docs\/latest\/configuration.html SparkConf. 2022. Configuration - Spark 3.2.1 Documentation. https:\/\/spark.apache.org\/docs\/latest\/configuration.html"},{"key":"e_1_3_2_2_44_1","volume-title":"Multi-task bayesian optimization. Advances in neural information processing systems","author":"Swersky Kevin","year":"2013","unstructured":"Kevin Swersky , Jasper Snoek , and Ryan P Adams . 2013. Multi-task bayesian optimization. Advances in neural information processing systems , Vol. 26 ( 2013 ). Kevin Swersky, Jasper Snoek, and Ryan P Adams. 2013. Multi-task bayesian optimization. Advances in neural information processing systems, Vol. 26 (2013)."},{"key":"e_1_3_2_2_45_1","doi-asserted-by":"publisher","DOI":"10.14778\/1687553.1687609"},{"key":"e_1_3_2_2_46_1","unstructured":"Apache Spark Tuning. 2017. Apache Spark Tuning - DZone. https:\/\/dzone.com\/articles\/apache-spark-performance-tuning-degree-of-parallel Apache Spark Tuning. 2017. Apache Spark Tuning - DZone. https:\/\/dzone.com\/articles\/apache-spark-performance-tuning-degree-of-parallel"},{"key":"e_1_3_2_2_47_1","unstructured":"Cloudera Spark Tuning. 2018. Cloudera Performance Management - Tuning Spark Applications. https:\/\/www.cloudera.com\/documentation\/enterprise\/5-9-x\/topics\/admin_spark_tuning.html Cloudera Spark Tuning. 2018. Cloudera Performance Management - Tuning Spark Applications. https:\/\/www.cloudera.com\/documentation\/enterprise\/5-9-x\/topics\/admin_spark_tuning.html"},{"key":"e_1_3_2_2_48_1","doi-asserted-by":"publisher","DOI":"10.1145\/3035918.3064029"},{"key":"e_1_3_2_2_49_1","volume-title":"Ernest: Efficient performance prediction for large-scale advanced analytics. In 13th {USENIX} symposium on networked systems design and implementation ({NSDI} 16). 363--378.","author":"Venkataraman Shivaram","year":"2016","unstructured":"Shivaram Venkataraman , Zongheng Yang , Michael Franklin , Benjamin Recht , and Ion Stoica . 2016 . Ernest: Efficient performance prediction for large-scale advanced analytics. In 13th {USENIX} symposium on networked systems design and implementation ({NSDI} 16). 363--378. Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin Recht, and Ion Stoica. 2016. Ernest: Efficient performance prediction for large-scale advanced analytics. In 13th {USENIX} symposium on networked systems design and implementation ({NSDI} 16). 363--378."},{"key":"e_1_3_2_2_50_1","volume-title":"Performance prediction for apache spark platform. In 2015 IEEE 17th International Conference on High Performance Computing and Communications","author":"Wang Kewen","year":"2015","unstructured":"Kewen Wang and Mohammad Maifi Hasan Khan . 2015. Performance prediction for apache spark platform. In 2015 IEEE 17th International Conference on High Performance Computing and Communications , 2015 IEEE 7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th International Conference on Embedded Software and Systems. IEEE , 166--173. Kewen Wang and Mohammad Maifi Hasan Khan. 2015. Performance prediction for apache spark platform. In 2015 IEEE 17th International Conference on High Performance Computing and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th International Conference on Embedded Software and Systems. IEEE, 166--173."},{"key":"e_1_3_2_2_51_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICDM.2015.20"},{"key":"e_1_3_2_2_52_1","volume-title":"LOCAT: Low-Overhead Online Configuration Auto-Tuning of Spark SQL Applications [Extended Version]. arXiv preprint arXiv:2203.14889","author":"Xin Jinhan","year":"2022","unstructured":"Jinhan Xin , Kai Hwang , and Zhibin Yu . 2022 . LOCAT: Low-Overhead Online Configuration Auto-Tuning of Spark SQL Applications [Extended Version]. arXiv preprint arXiv:2203.14889 (2022). Jinhan Xin, Kai Hwang, and Zhibin Yu. 2022. LOCAT: Low-Overhead Online Configuration Auto-Tuning of Spark SQL Applications [Extended Version]. arXiv preprint arXiv:2203.14889 (2022)."},{"key":"e_1_3_2_2_53_1","unstructured":"Dani Yogatama and Gideon Mann. 2014. Efficient transfer learning method for automatic hyperparameter tuning. In Artificial Intelligence and Statistics. 1077--1085. Dani Yogatama and Gideon Mann. 2014. Efficient transfer learning method for automatic hyperparameter tuning. In Artificial Intelligence and Statistics. 1077--1085."},{"key":"e_1_3_2_2_54_1","doi-asserted-by":"publisher","DOI":"10.1145\/3173162.3173187"},{"key":"e_1_3_2_2_55_1","doi-asserted-by":"publisher","DOI":"10.1109\/BigData.2017.8257950"},{"key":"e_1_3_2_2_56_1","volume-title":"2nd USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 10)","author":"Zaharia Matei","year":"2010","unstructured":"Matei Zaharia , Mosharaf Chowdhury , Michael J Franklin , Scott Shenker , and Ion Stoica . 2010 . Spark: Cluster computing with working sets . In 2nd USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 10) . Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica. 2010. Spark: Cluster computing with working sets. In 2nd USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 10)."},{"key":"e_1_3_2_2_57_1","doi-asserted-by":"publisher","DOI":"10.1145\/2934664"},{"key":"e_1_3_2_2_58_1","doi-asserted-by":"publisher","DOI":"10.1145\/3299869.3300085"},{"key":"e_1_3_2_2_59_1","doi-asserted-by":"publisher","DOI":"10.14778\/3538598.3538604"},{"volume-title":"Ensemble methods: foundations and algorithms","author":"Zhou Zhi-Hua","key":"e_1_3_2_2_60_1","unstructured":"Zhi-Hua Zhou . 2012. Ensemble methods: foundations and algorithms . CRC press . Zhi-Hua Zhou. 2012. Ensemble methods: foundations and algorithms. CRC press."},{"key":"e_1_3_2_2_61_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11390-020-0142-x"},{"key":"e_1_3_2_2_62_1","doi-asserted-by":"publisher","DOI":"10.1145\/3127479.3128605"}],"event":{"name":"KDD '23: The 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining","sponsor":["SIGMOD ACM Special Interest Group on Management of Data","SIGKDD ACM Special Interest Group on Knowledge Discovery in Data"],"location":"Long Beach CA USA","acronym":"KDD '23"},"container-title":["Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3580305.3599953","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,9,9]],"date-time":"2023-09-09T05:20:33Z","timestamp":1694236833000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3580305.3599953"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,8,4]]},"references-count":62,"alternative-id":["10.1145\/3580305.3599953","10.1145\/3580305"],"URL":"https:\/\/doi.org\/10.1145\/3580305.3599953","relation":{},"subject":[],"published":{"date-parts":[[2023,8,4]]},"assertion":[{"value":"2023-08-04","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}