{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,16]],"date-time":"2024-11-16T05:24:46Z","timestamp":1731734686045,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":86,"publisher":"ACM","funder":[{"name":"the US National Science Foundation","award":["CNS-2120369,CNS-2154059,ECCS-2028872"]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2023,11,15]]},"DOI":"10.1145\/3576915.3616661","type":"proceedings-article","created":{"date-parts":[[2023,11,21]],"date-time":"2023-11-21T17:35:13Z","timestamp":1700588113000},"page":"1317-1331","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":4,"title":["TileMask: A Passive-Reflection-based Attack against mmWave Radar Object Detection in Autonomous Driving"],"prefix":"10.1145","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-3000-3918","authenticated-orcid":false,"given":"Yi","family":"Zhu","sequence":"first","affiliation":[{"name":"University at Buffalo, the State University of New York, Buffalo, NY, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9646-7099","authenticated-orcid":false,"given":"Chenglin","family":"Miao","sequence":"additional","affiliation":[{"name":"Iowa State University, Ames, IA, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9691-9668","authenticated-orcid":false,"given":"Hongfei","family":"Xue","sequence":"additional","affiliation":[{"name":"University of North Carolina at Charlotte, Charlotte, NC, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1880-5096","authenticated-orcid":false,"given":"Zhengxiong","family":"Li","sequence":"additional","affiliation":[{"name":"University of Colorado Denver, Denver, CO, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3421-4942","authenticated-orcid":false,"given":"Yunnan","family":"Yu","sequence":"additional","affiliation":[{"name":"University at Buffalo, the State University of New York, Buffalo, NY, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6444-9411","authenticated-orcid":false,"given":"Wenyao","family":"Xu","sequence":"additional","affiliation":[{"name":"University at Buffalo, the State University of New York, Buffalo, NY, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7223-543X","authenticated-orcid":false,"given":"Lu","family":"Su","sequence":"additional","affiliation":[{"name":"Purdue University, West Lafayette, IN, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4679-6572","authenticated-orcid":false,"given":"Chunming","family":"Qiao","sequence":"additional","affiliation":[{"name":"University at Buffalo, the State University of New York, Buffalo, NY, USA"}]}],"member":"320","published-online":{"date-parts":[[2023,11,21]]},"reference":[{"key":"e_1_3_2_1_1_1","unstructured":"2012. Sketchfab. https:\/\/sketchfab.com\/"},{"key":"e_1_3_2_1_2_1","unstructured":"2015. Autoware Foundation. https:\/\/www.autoware.org\/"},{"key":"e_1_3_2_1_3_1","unstructured":"2019. Why Automotive Companies Should Adopt RADAR-based ADAS Systems. https:\/\/www.einfochips.com\/blog\/why-automotive-companies-should-adopt-radar-based-adas-systems\/"},{"key":"e_1_3_2_1_4_1","unstructured":"2020. Baidu Apollo. https:\/\/developer.apollo.auto\/"},{"key":"e_1_3_2_1_5_1","unstructured":"2021. CRUW Dataset. https:\/\/www.cruwdataset.org\/"},{"key":"e_1_3_2_1_6_1","unstructured":"2021. ROD2021 Challenge. https:\/\/www.cruwdataset.org\/rod2021"},{"key":"e_1_3_2_1_7_1","unstructured":"2021. TI AWR1843. https:\/\/www.ti.com\/product\/AWR1843\/"},{"key":"e_1_3_2_1_8_1","unstructured":"2023. Stealth Aircraft. https:\/\/en.wikipedia.org\/wiki\/Stealth_aircraft"},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.3390\/s21061951"},{"key":"e_1_3_2_1_10_1","doi-asserted-by":"publisher","DOI":"10.1109\/SP40001.2021.00014"},{"key":"e_1_3_2_1_11_1","doi-asserted-by":"publisher","DOI":"10.1145\/2816795.2818072"},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1049\/iet-rsn.2018.0103"},{"volume-title":"IEEE Conference on Secure and Trustworthy Machine Learning. IEEE.","year":"2022","author":"Apruzzese Giovanni","key":"e_1_3_2_1_13_1","unstructured":"Giovanni Apruzzese, Hyrum Anderson, Savino Dambra, David Freeman, Fabio Pierazzi, and Kevin Roundy. 2022. Position:?Real Attackers Don't Compute Gradients\": Bridging the Gap Between Adversarial ML Research and Practice. In IEEE Conference on Secure and Trustworthy Machine Learning. IEEE."},{"volume-title":"CARS 2021 6th International Workshop on Critical Automotive Applications: Robustness & Safety.","year":"2021","author":"Assunta Maria","key":"e_1_3_2_1_14_1","unstructured":"Maria Assunta, Giovanna Di Marzo Serugendo, Anne-Francoise Cutting-Decelle, and Martin Strohmeier. 2021. A semantic-based approach to analyze the link between security and safety for Internet of Vehicle (IoV) and Autonomous Vehicles (AVs). In CARS 2021 6th International Workshop on Critical Automotive Applications: Robustness & Safety."},{"key":"e_1_3_2_1_15_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00939"},{"volume-title":"EvadeDroid: A practical evasion attack on machine learning for black-box Android malware detection. arXiv preprint arXiv:2110.03301","year":"2021","author":"Bostani Hamid","key":"e_1_3_2_1_16_1","unstructured":"Hamid Bostani and Veelasha Moonsamy. 2021. EvadeDroid: A practical evasion attack on machine learning for black-box Android malware detection. arXiv preprint arXiv:2110.03301 (2021)."},{"volume-title":"Mingyan Liu, and Bo Li.","year":"2021","author":"Cao Yulong","key":"e_1_3_2_1_17_1","unstructured":"Yulong Cao, Ningfei Wang, Chaowei Xiao, Dawei Yang, Jin Fang, Ruigang Yang, Qi Alfred Chen, Mingyan Liu, and Bo Li. 2021. Invisible for both Camera and LiDAR: Security of Multi-Sensor Fusion based Perception in Autonomous Driving Under Physical-World Attacks. arXiv preprint arXiv:2106.09249 (2021)."},{"key":"e_1_3_2_1_18_1","doi-asserted-by":"publisher","DOI":"10.1145\/3319535.3339815"},{"volume-title":"Towards evaluating the robustness of neural networks. In 2017 ieee symposium on security and privacy (sp)","author":"Carlini Nicholas","key":"e_1_3_2_1_19_1","unstructured":"Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness of neural networks. In 2017 ieee symposium on security and privacy (sp). IEEE, 39--57."},{"volume-title":"A platform for false data injection in frequency modulated continuous wave radar","author":"Chauhan Ruchir","key":"e_1_3_2_1_20_1","unstructured":"Ruchir Chauhan. 2014. A platform for false data injection in frequency modulated continuous wave radar. Utah State University."},{"key":"e_1_3_2_1_21_1","doi-asserted-by":"publisher","DOI":"10.14722\/ndss.2023.24348"},{"volume-title":"Tel Aviv","year":"2022","author":"Cheng Zhiyuan","key":"e_1_3_2_1_22_1","unstructured":"Zhiyuan Cheng, James Liang, Hongjun Choi, Guanhong Tao, Zhiwen Cao, Dong-fang Liu, and Xiangyu Zhang. 2022. Physical attack on monocular depth estimation with optimal adversarial patches. In Computer Vision-ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XXXVIII. Springer, 514--532."},{"key":"e_1_3_2_1_23_1","doi-asserted-by":"publisher","DOI":"10.1145\/3372297.3417249"},{"key":"e_1_3_2_1_24_1","unstructured":"Hongjun Choi Sayali Kate Yousra Aafer Xiangyu Zhang and Dongyan Xu. 2020. Software-based Realtime Recovery from Sensor Attacks on Robotic Vehicles.. In RAID. 349--364."},{"key":"e_1_3_2_1_25_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPS-ISA50397.2020.00042"},{"key":"e_1_3_2_1_26_1","doi-asserted-by":"publisher","DOI":"10.1109\/MAES.2020.3021322"},{"key":"e_1_3_2_1_27_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW50498.2020.00059"},{"key":"e_1_3_2_1_28_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.comnet.2022.109394"},{"key":"e_1_3_2_1_29_1","doi-asserted-by":"publisher","DOI":"10.1109\/EuroSP48549.2020.00029"},{"volume-title":"Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572","year":"2014","author":"Goodfellow Ian J","key":"e_1_3_2_1_30_1","unstructured":"Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)."},{"key":"e_1_3_2_1_31_1","doi-asserted-by":"publisher","DOI":"10.1145\/3460426.3463657"},{"key":"e_1_3_2_1_32_1","unstructured":"Jack D Jernigan Meltem F Kodaman et al. 2001. An investigation of the utility and accuracy of the table of speed and stopping distances specified in the Code of Virginia. Technical Report. Virginia Transportation Research Council."},{"key":"e_1_3_2_1_33_1","doi-asserted-by":"publisher","DOI":"10.1109\/SP40001.2021.00091"},{"volume-title":"International Conference on Learning Representations.","year":"2019","author":"Jia Yunhan","key":"e_1_3_2_1_34_1","unstructured":"Yunhan Jia, Yantao Lu, Junjie Shen, Qi Alfred Chen, Hao Chen, Zhenyu Zhong, and Tao Wei. 2019. Fooling detection alone is not enough: Adversarial attack against multiple object tracking. In International Conference on Learning Representations."},{"volume-title":"30th USENIX Security Symposium (USENIX Security 21)","year":"2021","author":"Jing Pengfei","key":"e_1_3_2_1_35_1","unstructured":"Pengfei Jing, Qiyi Tang, Yuefeng Du, Lei Xue, Xiapu Luo, Ting Wang, Sen Nie, and Shi Wu. 2021. Too good to be safe: Tricking lane detection in autonomous driving with crafted perturbations. In 30th USENIX Security Symposium (USENIX Security 21). 3237--3254."},{"key":"e_1_3_2_1_36_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00744"},{"volume-title":"USENIX Security Symposium. 425--442","year":"2019","author":"Kim Taegyu","key":"e_1_3_2_1_37_1","unstructured":"Taegyu Kim, Chung Hwan Kim, Junghwan Rhee, Fan Fei, Zhan Tu, Gregory Walkup, Xiangyu Zhang, Xinyan Deng, and Dongyan Xu. 2019. RVFuzzer: Finding Input Validation Bugs in Robotic Vehicles through Control-Guided Testing.. In USENIX Security Symposium. 425--442."},{"key":"e_1_3_2_1_38_1","doi-asserted-by":"publisher","DOI":"10.1002\/adem.202001473"},{"key":"e_1_3_2_1_39_1","doi-asserted-by":"publisher","DOI":"10.1145\/3474376.3487283"},{"key":"e_1_3_2_1_40_1","doi-asserted-by":"publisher","DOI":"10.1145\/3300061.3345437"},{"key":"e_1_3_2_1_41_1","doi-asserted-by":"publisher","DOI":"10.1109\/RADAR.2017.7944304"},{"volume-title":"Textbugger: Generating adversarial text against real-world applications. arXiv preprint arXiv:1812.05271","year":"2018","author":"Li Jinfeng","key":"e_1_3_2_1_42_1","unstructured":"Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting Wang. 2018. Textbugger: Generating adversarial text against real-world applications. arXiv preprint arXiv:1812.05271 (2018)."},{"key":"e_1_3_2_1_43_1","doi-asserted-by":"publisher","DOI":"10.1109\/INFOCOM41043.2020.9155389"},{"volume-title":"30th USENIX Security Symposium (USENIX Security 21)","year":"2021","author":"Lovisotto Giulio","key":"e_1_3_2_1_44_1","unstructured":"Giulio Lovisotto, Henry Turner, Ivo Sluganovic, Martin Strohmeier, and Ivan Mar-tinovic. 2021. {SLAP}: Improving Physical Adversarial Examples with {Short-Lived} Adversarial Perturbations. In 30th USENIX Security Symposium (USENIX Security 21). 1865--1882."},{"volume-title":"29th USENIX Security Symposium (USENIX Security 20)","author":"Luo Mulong","key":"e_1_3_2_1_45_1","unstructured":"Mulong Luo, Andrew C. Myers, and G. Edward Suh. 2020. Stealthy tracking of au-tonomous vehicles with cache side channels. In 29th USENIX Security Symposium (USENIX Security 20)."},{"volume-title":"WIP: Interrupt Attack on TEE-Protected Robotic Vehicles.","year":"2022","author":"Luo Mulong","key":"e_1_3_2_1_46_1","unstructured":"Mulong Luo and G. Edward Suh. 2022. WIP: Interrupt Attack on TEE-Protected Robotic Vehicles."},{"key":"e_1_3_2_1_47_1","doi-asserted-by":"publisher","DOI":"10.1109\/TTHZ.2019.2933166"},{"key":"e_1_3_2_1_48_1","doi-asserted-by":"publisher","DOI":"10.1145\/3460120.3484796"},{"key":"e_1_3_2_1_49_1","doi-asserted-by":"publisher","DOI":"10.1109\/TMTT.2021.3115804"},{"volume-title":"MobilBye: attacking ADAS with camera spoofing. arXiv preprint arXiv:1906.09765","year":"2019","author":"Nassi Dudi","key":"e_1_3_2_1_50_1","unstructured":"Dudi Nassi, Raz Ben-Netanel, Yuval Elovici, and Ben Nassi. 2019. MobilBye: attacking ADAS with camera spoofing. arXiv preprint arXiv:1906.09765 (2019)."},{"key":"e_1_3_2_1_51_1","doi-asserted-by":"publisher","DOI":"10.1109\/GLOBECOM42002.2020.9322472"},{"key":"e_1_3_2_1_52_1","doi-asserted-by":"publisher","DOI":"10.1145\/3452296.3472896"},{"volume-title":"Practical black-box attacks against deep learning systems using adversarial examples. arXiv preprint arXiv:1602.02697 1, 2","year":"2016","author":"Papernot Nicolas","key":"e_1_3_2_1_53_1","unstructured":"Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram Swami. 2016. Practical black-box attacks against deep learning systems using adversarial examples. arXiv preprint arXiv:1602.02697 1, 2 (2016), 3."},{"key":"e_1_3_2_1_54_1","doi-asserted-by":"publisher","DOI":"10.1109\/EuroSP.2016.36"},{"key":"e_1_3_2_1_55_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.01307"},{"key":"e_1_3_2_1_56_1","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v37i2.25299"},{"volume-title":"29th USENIX Security Symposium (USENIX Security 20)","year":"2020","author":"Quinonez Raul","key":"e_1_3_2_1_57_1","unstructured":"Raul Quinonez, Jairo Giraldo, Luis Salazar, Erick Bauman, Alvaro Cardenas, and Zhiqiang Lin. 2020. {SAVIOR}: Securing autonomous vehicles with robust physical invariants. In 29th USENIX Security Symposium (USENIX Security 20). 895--912."},{"key":"e_1_3_2_1_58_1","doi-asserted-by":"publisher","DOI":"10.1145\/3462633.3483981"},{"key":"e_1_3_2_1_59_1","unstructured":"Sandeep Rao. 2017. Introduction to mmWave sensing: FMCW radars. Texas Instruments (TI) mmWave Training Series (2017)."},{"key":"e_1_3_2_1_60_1","doi-asserted-by":"publisher","DOI":"10.1109\/LWC.2018.2867459"},{"volume-title":"FaceHack: Attacking Facial Recognition Systems using Malicious Facial Characteristics","year":"2021","author":"Sarkar Esha","key":"e_1_3_2_1_61_1","unstructured":"Esha Sarkar, Hadjer Benkraouda, Gopika Krishnan, Homer Gamil, and Michail Maniatakos. 2021. FaceHack: Attacking Facial Recognition Systems using Malicious Facial Characteristics. IEEE Transactions on Biometrics, Behavior, and Identity Science (2021)."},{"key":"e_1_3_2_1_62_1","doi-asserted-by":"publisher","DOI":"10.1109\/MWC.2016.1600039WC"},{"key":"e_1_3_2_1_63_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICASSP39728.2021.9413760"},{"key":"e_1_3_2_1_64_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-66787-4_22"},{"key":"e_1_3_2_1_65_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-45371-8_3"},{"key":"e_1_3_2_1_66_1","unstructured":"Trade Shows and EDICON China. [n. d.]. mmWave Channel Modeling with Diffuse Scattering in an Office Environment. Channels 5 ([n. d.]) 6G."},{"key":"e_1_3_2_1_67_1","doi-asserted-by":"publisher","DOI":"10.1109\/NAFIPS.1996.534789"},{"key":"e_1_3_2_1_68_1","doi-asserted-by":"publisher","DOI":"10.1145\/3460426.3463654"},{"key":"e_1_3_2_1_69_1","doi-asserted-by":"publisher","DOI":"10.1109\/TIFS.2021.3076287"},{"volume-title":"Exploring Adversarial Robustness of Multi-Sensor Perception Systems in Self Driving. arXiv preprint arXiv:2101.06784","year":"2021","author":"Tu James","key":"e_1_3_2_1_70_1","unstructured":"James Tu, Huichen Li, Xinchen Yan, Mengye Ren, Yun Chen, Ming Liang, Eilyan Bitar, Ersin Yumer, and Raquel Urtasun. 2021. Exploring Adversarial Robustness of Multi-Sensor Perception Systems in Self Driving. arXiv preprint arXiv:2101.06784 (2021)."},{"key":"e_1_3_2_1_71_1","article-title":"Visualizing data using t-SNE","volume":"9","author":"der Maaten Laurens Van","year":"2008","unstructured":"Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE. Journal of machine learning research 9, 11 (2008).","journal-title":"Journal of machine learning research"},{"key":"e_1_3_2_1_72_1","doi-asserted-by":"publisher","DOI":"10.1109\/TIFS.2020.3026543"},{"volume-title":"Physically-Constrained Adversarial Attacks on Brain-Machine Interfaces. In Workshop on Trustworthy and Socially Responsible Machine Learning, NeurIPS","year":"2022","author":"Wang Xiaying","key":"e_1_3_2_1_73_1","unstructured":"Xiaying Wang, Rodolfo Octavio Siller Quintanilla, Michael Hersche, Luca Benini, and Gagandeep Singh. 2022. Physically-Constrained Adversarial Attacks on Brain-Machine Interfaces. In Workshop on Trustworthy and Socially Responsible Machine Learning, NeurIPS 2022."},{"key":"e_1_3_2_1_74_1","doi-asserted-by":"publisher","DOI":"10.1145\/3460426.3463658"},{"key":"e_1_3_2_1_75_1","doi-asserted-by":"publisher","DOI":"10.1109\/JSTSP.2021.3058895"},{"key":"e_1_3_2_1_76_1","doi-asserted-by":"publisher","DOI":"10.1145\/3495243.3558247"},{"volume-title":"Image quality assessment: from error visibility to structural similarity","year":"2004","author":"Wang Zhou","key":"e_1_3_2_1_77_1","unstructured":"Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing 13, 4 (2004), 600--612."},{"key":"e_1_3_2_1_78_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00935"},{"key":"e_1_3_2_1_79_1","doi-asserted-by":"publisher","DOI":"10.1109\/SP46214.2022.9833776"},{"key":"e_1_3_2_1_80_1","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v35i16.17663"},{"key":"e_1_3_2_1_81_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58558-7_39"},{"key":"e_1_3_2_1_82_1","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2018.2867917"},{"volume-title":"Rolling Colors: Adversarial Laser Exploits against Traffic Light Recognition. arXiv preprint arXiv:2204.02675","year":"2022","author":"Yan Chen","key":"e_1_3_2_1_83_1","unstructured":"Chen Yan, Zhijian Xu, Zhanyuan Yin, Xiaoyu Ji, and Wenyuan Xu. 2022. Rolling Colors: Adversarial Laser Exploits against Traffic Light Recognition. arXiv preprint arXiv:2204.02675 (2022)."},{"volume-title":"Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence. 2533--2539","year":"2021","author":"Zhang Zihan","key":"e_1_3_2_1_84_1","unstructured":"Zihan Zhang, Mingxuan Liu, Chao Zhang, Yiming Zhang, Zhou Li, Qi Li, Haixin Duan, and Donghong Sun. 2021. Argot: generating adversarial readable chinese texts. In Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence. 2533--2539."},{"key":"e_1_3_2_1_85_1","doi-asserted-by":"publisher","DOI":"10.1145\/3485730.3485935"},{"key":"e_1_3_2_1_86_1","doi-asserted-by":"publisher","DOI":"10.1145\/3460120.3485377"}],"event":{"name":"CCS '23: ACM SIGSAC Conference on Computer and Communications Security","sponsor":["SIGSAC ACM Special Interest Group on Security, Audit, and Control"],"location":"Copenhagen Denmark","acronym":"CCS '23"},"container-title":["Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3576915.3616661","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,15]],"date-time":"2024-11-15T11:51:38Z","timestamp":1731671498000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3576915.3616661"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,11,15]]},"references-count":86,"alternative-id":["10.1145\/3576915.3616661","10.1145\/3576915"],"URL":"https:\/\/doi.org\/10.1145\/3576915.3616661","relation":{},"subject":[],"published":{"date-parts":[[2023,11,15]]},"assertion":[{"value":"2023-11-21","order":3,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}