{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T22:05:16Z","timestamp":1730325916777,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":77,"publisher":"ACM","funder":[{"name":"European Union","award":["813162"]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2022,12,9]]},"DOI":"10.1145\/3565011.3569060","type":"proceedings-article","created":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T17:08:50Z","timestamp":1669914530000},"page":"49-56","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":2,"title":["Towards a decentralized infrastructure for data marketplaces"],"prefix":"10.1145","author":[{"given":"Lodovico","family":"Giaretta","sequence":"first","affiliation":[{"name":"KTH Royal Institute of Technology, Stockholm, Sweden"}]},{"given":"Thomas","family":"Marchioro","sequence":"additional","affiliation":[{"name":"Foundation for Research and Technology Hellas, Heraklion, Greece"}]},{"given":"Evangelos","family":"Markatos","sequence":"additional","affiliation":[{"name":"Foundation for Research and Technology Hellas, Heraklion, Greece"}]},{"given":"\u0160ar\u016bnas","family":"Girdzijauskas","sequence":"additional","affiliation":[{"name":"KTH Royal Institute of Technology, Stockholm, Sweden"}]}],"member":"320","published-online":{"date-parts":[[2022,12,6]]},"reference":[{"key":"e_1_3_2_1_1_1","unstructured":"2016. General Data Protection Regulation. https:\/\/gdpr-info.eu. Accessed: 2022-09-21. 2016. General Data Protection Regulation. https:\/\/gdpr-info.eu. Accessed: 2022-09-21."},{"key":"e_1_3_2_1_2_1","unstructured":"2018. California Consumer Privacy Act. https:\/\/ccpa-info.com\/home\/1798-140-definitions. Accessed: 2022-09-21. 2018. California Consumer Privacy Act. https:\/\/ccpa-info.com\/home\/1798-140-definitions. Accessed: 2022-09-21."},{"key":"e_1_3_2_1_3_1","doi-asserted-by":"publisher","DOI":"10.1145\/2976749.2978318"},{"key":"e_1_3_2_1_4_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jisa.2019.102362"},{"key":"e_1_3_2_1_5_1","doi-asserted-by":"publisher","DOI":"10.1145\/3190508.3190538"},{"key":"e_1_3_2_1_6_1","volume-title":"What is the price of data? A measurement study of commercial data marketplaces. arXiv preprint arXiv:2111.04427","author":"Azcoitia Santiago Andr\u00e9s","year":"2021","unstructured":"Santiago Andr\u00e9s Azcoitia , Costas Iordanu , and Nikolaos Laoutaris . 2021. What is the price of data? A measurement study of commercial data marketplaces. arXiv preprint arXiv:2111.04427 ( 2021 ). Santiago Andr\u00e9s Azcoitia, Costas Iordanu, and Nikolaos Laoutaris. 2021. What is the price of data? A measurement study of commercial data marketplaces. arXiv preprint arXiv:2111.04427 (2021)."},{"key":"e_1_3_2_1_7_1","volume-title":"Try Before You Buy: A practical data purchasing algorithm for real-world data marketplaces. arXiv preprint arXiv:2012.08874","author":"Azcoitia Santiago Andr\u00e9s","year":"2020","unstructured":"Santiago Andr\u00e9s Azcoitia and Nikolaos Laoutaris . 2020. Try Before You Buy: A practical data purchasing algorithm for real-world data marketplaces. arXiv preprint arXiv:2012.08874 ( 2020 ). Santiago Andr\u00e9s Azcoitia and Nikolaos Laoutaris. 2020. Try Before You Buy: A practical data purchasing algorithm for real-world data marketplaces. arXiv preprint arXiv:2012.08874 (2020)."},{"key":"e_1_3_2_1_8_1","volume-title":"A survey of data marketplaces and their business models. arXiv preprint arXiv:2201.04561","author":"Azcoitia Santiago Andr\u00e9s","year":"2022","unstructured":"Santiago Andr\u00e9s Azcoitia and Nikolaos Laoutaris . 2022. A survey of data marketplaces and their business models. arXiv preprint arXiv:2201.04561 ( 2022 ). Santiago Andr\u00e9s Azcoitia and Nikolaos Laoutaris. 2022. A survey of data marketplaces and their business models. arXiv preprint arXiv:2201.04561 (2022)."},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.1109\/COMST.2019.2928178"},{"key":"e_1_3_2_1_10_1","unstructured":"Vitalik Buterin et al. 2014. A next-generation smart contract and decentralized application platform. white paper 3 37 (2014) 2--1. Vitalik Buterin et al. 2014. A next-generation smart contract and decentralized application platform. white paper 3 37 (2014) 2--1."},{"key":"e_1_3_2_1_11_1","volume-title":"Improving supply chain performance management: A systematic approach to analyzing iterative KPI accomplishment. Decision support systems 46, 2","author":"Cai Jian","year":"2009","unstructured":"Jian Cai , Xiangdong Liu , Zhihui Xiao , and Jin Liu . 2009. Improving supply chain performance management: A systematic approach to analyzing iterative KPI accomplishment. Decision support systems 46, 2 ( 2009 ), 512--521. Jian Cai, Xiangdong Liu, Zhihui Xiao, and Jin Liu. 2009. Improving supply chain performance management: A systematic approach to analyzing iterative KPI accomplishment. Decision support systems 46, 2 (2009), 512--521."},{"key":"e_1_3_2_1_12_1","volume-title":"28th USENIX Security Symposium (USENIX Security 19)","author":"Carlini Nicholas","year":"2019","unstructured":"Nicholas Carlini , Chang Liu , \u00dalfar Erlingsson , Jernej Kos , and Dawn Song . 2019 . The secret sharer: Evaluating and testing unintended memorization in neural networks . In 28th USENIX Security Symposium (USENIX Security 19) . 267--284. Nicholas Carlini, Chang Liu, \u00dalfar Erlingsson, Jernej Kos, and Dawn Song. 2019. The secret sharer: Evaluating and testing unintended memorization in neural networks. In 28th USENIX Security Symposium (USENIX Security 19). 267--284."},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"publisher","DOI":"10.1109\/EuroSP.2019.00023"},{"key":"e_1_3_2_1_14_1","volume-title":"Intel SGX explained. Cryptology ePrint Archive","author":"Costan Victor","year":"2016","unstructured":"Victor Costan and Srinivas Devadas . 2016. Intel SGX explained. Cryptology ePrint Archive ( 2016 ). Victor Costan and Srinivas Devadas. 2016. Intel SGX explained. Cryptology ePrint Archive (2016)."},{"key":"e_1_3_2_1_15_1","unstructured":"Munther Dahleh. 2018. Why the Data Marketplaces of the Future Will Sell Insights Not Data. https:\/\/sloanreview.mit.edu\/article\/why-the-data-marketplaces-of-the-future-will-sell-insights-not-data\/. Accessed: 2022-09-21. Munther Dahleh. 2018. Why the Data Marketplaces of the Future Will Sell Insights Not Data. https:\/\/sloanreview.mit.edu\/article\/why-the-data-marketplaces-of-the-future-will-sell-insights-not-data\/. Accessed: 2022-09-21."},{"key":"e_1_3_2_1_16_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-32009-5_38"},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-981-13-1165-9_57"},{"key":"e_1_3_2_1_18_1","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2021.3120640"},{"key":"e_1_3_2_1_19_1","doi-asserted-by":"publisher","DOI":"10.5555\/1791834.1791836"},{"key":"e_1_3_2_1_20_1","doi-asserted-by":"crossref","unstructured":"Cynthia Dwork Aaron Roth etal 2014. The algorithmic foundations of differential privacy. Foundations and Trends\u00ae in Theoretical Computer Science 9 3--4 (2014) 211--407. Cynthia Dwork Aaron Roth et al. 2014. The algorithmic foundations of differential privacy. Foundations and Trends \u00ae in Theoretical Computer Science 9 3--4 (2014) 211--407.","DOI":"10.1561\/0400000042"},{"key":"e_1_3_2_1_21_1","doi-asserted-by":"publisher","DOI":"10.1109\/MCSE.2022.3163817"},{"key":"e_1_3_2_1_22_1","unstructured":"Ethereum Foundation. 2022. Ethereum Vision. Retrieved 2022-09-22 from https:\/\/ethereum.org\/en\/upgrades\/vision\/ Ethereum Foundation. 2022. Ethereum Vision. Retrieved 2022-09-22 from https:\/\/ethereum.org\/en\/upgrades\/vision\/"},{"key":"e_1_3_2_1_23_1","unstructured":"J\u00e9r\u00f4me Euzenat Pavel Shvaiko etal 2007. Ontology matching. Vol. 18. Springer. J\u00e9r\u00f4me Euzenat Pavel Shvaiko et al. 2007. Ontology matching. Vol. 18. Springer."},{"key":"e_1_3_2_1_24_1","volume-title":"Data market platforms: Trading data assets to solve data problems. arXiv preprint arXiv:2002.01047","author":"Fernandez Raul Castro","year":"2020","unstructured":"Raul Castro Fernandez , Pranav Subramaniam , and Michael J Franklin . 2020. Data market platforms: Trading data assets to solve data problems. arXiv preprint arXiv:2002.01047 ( 2020 ). Raul Castro Fernandez, Pranav Subramaniam, and Michael J Franklin. 2020. Data market platforms: Trading data assets to solve data problems. arXiv preprint arXiv:2002.01047 (2020)."},{"key":"e_1_3_2_1_25_1","volume-title":"Legal challenges and opportunities of blockchain technology in the real estate sector. Journal of Property, Planning and Environmental Law","author":"Garcia-Teruel Rosa M","year":"2020","unstructured":"Rosa M Garcia-Teruel . 2020. Legal challenges and opportunities of blockchain technology in the real estate sector. Journal of Property, Planning and Environmental Law ( 2020 ). Rosa M Garcia-Teruel. 2020. Legal challenges and opportunities of blockchain technology in the real estate sector. Journal of Property, Planning and Environmental Law (2020)."},{"key":"e_1_3_2_1_26_1","first-page":"16937","article-title":"Inverting gradients-how easy is it to break privacy in federated learning","volume":"33","author":"Geiping Jonas","year":"2020","unstructured":"Jonas Geiping , Hartmut Bauermeister , Hannah Dr\u00f6ge , and Michael Moeller . 2020 . Inverting gradients-how easy is it to break privacy in federated learning ? Advances in Neural Information Processing Systems 33 (2020), 16937 -- 16947 . Jonas Geiping, Hartmut Bauermeister, Hannah Dr\u00f6ge, and Michael Moeller. 2020. Inverting gradients-how easy is it to break privacy in federated learning? Advances in Neural Information Processing Systems 33 (2020), 16937--16947.","journal-title":"Advances in Neural Information Processing Systems"},{"key":"e_1_3_2_1_27_1","volume-title":"International Conference on Machine Learning. PMLR, 2242--2251","author":"Ghorbani Amirata","year":"2019","unstructured":"Amirata Ghorbani and James Zou . 2019 . Data shapley: Equitable valuation of data for machine learning . In International Conference on Machine Learning. PMLR, 2242--2251 . Amirata Ghorbani and James Zou. 2019. Data shapley: Equitable valuation of data for machine learning. In International Conference on Machine Learning. PMLR, 2242--2251."},{"volume-title":"2019 IEEE International Conference on Big Data (Big Data). IEEE, 1117--1124","author":"Lodovico","key":"e_1_3_2_1_28_1","unstructured":"Lodovico Giaretta and \u0160ar\u016bnas Girdzijauskas. 2019. Gossip learning: Off the beaten path . In 2019 IEEE International Conference on Big Data (Big Data). IEEE, 1117--1124 . Lodovico Giaretta and \u0160ar\u016bnas Girdzijauskas. 2019. Gossip learning: Off the beaten path. In 2019 IEEE International Conference on Big Data (Big Data). IEEE, 1117--1124."},{"key":"e_1_3_2_1_29_1","volume-title":"2021 IEEE 37th International Conference on Data Engineering Workshops (ICDEW). IEEE, 92--99","author":"Giaretta Lodovico","year":"2021","unstructured":"Lodovico Giaretta , Ioannis Savvidis , Thomas Marchioro , \u0160ar\u016bnas Girdzijauskas , George Pallis , Marios D Dikaiakos , and Evangelos Markatos . 2021 . PDS 2: A user-centered decentralized marketplace for privacy preserving data processing . In 2021 IEEE 37th International Conference on Data Engineering Workshops (ICDEW). IEEE, 92--99 . Lodovico Giaretta, Ioannis Savvidis, Thomas Marchioro, \u0160ar\u016bnas Girdzijauskas, George Pallis, Marios D Dikaiakos, and Evangelos Markatos. 2021. PDS 2: A user-centered decentralized marketplace for privacy preserving data processing. In 2021 IEEE 37th International Conference on Data Engineering Workshops (ICDEW). IEEE, 92--99."},{"key":"e_1_3_2_1_30_1","doi-asserted-by":"publisher","DOI":"10.1109\/GLOBECOM42002.2020.9322220"},{"key":"e_1_3_2_1_31_1","doi-asserted-by":"publisher","DOI":"10.1109\/COMSNETS51098.2021.9352865"},{"key":"e_1_3_2_1_32_1","doi-asserted-by":"publisher","DOI":"10.1145\/3411501.3419432"},{"key":"e_1_3_2_1_33_1","doi-asserted-by":"publisher","DOI":"10.1145\/1409360.1409377"},{"key":"e_1_3_2_1_34_1","volume-title":"20th USENIX Security Symposium (USENIX Security 11)","author":"Huang Yan","year":"2011","unstructured":"Yan Huang , David Evans , Jonathan Katz , and Lior Malka . 2011 . Faster Secure {Two-Party} Computation Using Garbled Circuits . In 20th USENIX Security Symposium (USENIX Security 11) . Yan Huang, David Evans, Jonathan Katz, and Lior Malka. 2011. Faster Secure {Two-Party} Computation Using Garbled Circuits. In 20th USENIX Security Symposium (USENIX Security 11)."},{"key":"e_1_3_2_1_35_1","doi-asserted-by":"publisher","DOI":"10.14778\/3229863.3236266"},{"key":"e_1_3_2_1_36_1","doi-asserted-by":"publisher","DOI":"10.1109\/MSEC.2019.2947124"},{"key":"e_1_3_2_1_37_1","volume-title":"Markatos","author":"Kazlouski Andrei","year":"2022","unstructured":"Andrei Kazlouski , Thomas Marchioro , and Evangelos P . Markatos . 2022 . What your Fitbit Says about You : De-anonymizing Users in Lifelogging Datasets. In SECRYPT. Andrei Kazlouski, Thomas Marchioro, and Evangelos P. Markatos. 2022. What your Fitbit Says about You: De-anonymizing Users in Lifelogging Datasets. In SECRYPT."},{"key":"e_1_3_2_1_38_1","doi-asserted-by":"publisher","DOI":"10.1145\/3372297.3417872"},{"key":"e_1_3_2_1_39_1","volume-title":"On the accuracy of influence functions for measuring group effects. Advances in neural information processing systems 32","author":"Koh Pang Wei W","year":"2019","unstructured":"Pang Wei W Koh , Kai-Siang Ang , Hubert Teo , and Percy S Liang . 2019. On the accuracy of influence functions for measuring group effects. Advances in neural information processing systems 32 ( 2019 ). Pang Wei W Koh, Kai-Siang Ang, Hubert Teo, and Percy S Liang. 2019. On the accuracy of influence functions for measuring group effects. Advances in neural information processing systems 32 (2019)."},{"key":"e_1_3_2_1_40_1","volume-title":"Federated optimization: Distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527","author":"Kone\u010dn\u1ef3 Jakub","year":"2016","unstructured":"Jakub Kone\u010dn\u1ef3 , H Brendan McMahan , Daniel Ramage , and Peter Richt\u00e1rik . 2016. Federated optimization: Distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527 ( 2016 ). Jakub Kone\u010dn\u1ef3, H Brendan McMahan, Daniel Ramage, and Peter Richt\u00e1rik. 2016. Federated optimization: Distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527 (2016)."},{"key":"e_1_3_2_1_41_1","doi-asserted-by":"publisher","DOI":"10.1109\/TDSC.2021.3105099"},{"key":"e_1_3_2_1_42_1","doi-asserted-by":"publisher","DOI":"10.1038\/s41893-018-0152-7"},{"key":"e_1_3_2_1_43_1","first-page":"22","article-title":"The linked sensor middleware-connecting the real world and the semantic web","volume":"152","author":"Le-Phuoc Danh","year":"2011","unstructured":"Danh Le-Phuoc , Hoan Nguyen Mau Quoc , Josiane Xavier Parreira , and Manfred Hauswirth . 2011 . The linked sensor middleware-connecting the real world and the semantic web . Proceedings of the Semantic Web Challenge 152 (2011), 22 -- 23 . Danh Le-Phuoc, Hoan Nguyen Mau Quoc, Josiane Xavier Parreira, and Manfred Hauswirth. 2011. The linked sensor middleware-connecting the real world and the semantic web. Proceedings of the Semantic Web Challenge 152 (2011), 22--23.","journal-title":"Proceedings of the Semantic Web Challenge"},{"key":"e_1_3_2_1_44_1","doi-asserted-by":"publisher","DOI":"10.5555\/2938782.2938865"},{"key":"e_1_3_2_1_45_1","doi-asserted-by":"publisher","DOI":"10.1145\/3387108"},{"key":"e_1_3_2_1_46_1","doi-asserted-by":"publisher","DOI":"10.1145\/3133956.3134056"},{"key":"e_1_3_2_1_47_1","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2914675"},{"key":"e_1_3_2_1_48_1","volume-title":"Ethereum Emissions: A Bottom-up Estimate. arXiv preprint arXiv:2112.01238","author":"McDonald Kyle","year":"2021","unstructured":"Kyle McDonald . 2021 . Ethereum Emissions: A Bottom-up Estimate. arXiv preprint arXiv:2112.01238 (2021). Kyle McDonald. 2021. Ethereum Emissions: A Bottom-up Estimate. arXiv preprint arXiv:2112.01238 (2021)."},{"key":"e_1_3_2_1_49_1","volume-title":"Learning differentially private recurrent language models. arXiv preprint arXiv:1710.06963","author":"McMahan H Brendan","year":"2017","unstructured":"H Brendan McMahan , Daniel Ramage , Kunal Talwar , and Li Zhang . 2017. Learning differentially private recurrent language models. arXiv preprint arXiv:1710.06963 ( 2017 ). H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. 2017. Learning differentially private recurrent language models. arXiv preprint arXiv:1710.06963 (2017)."},{"key":"e_1_3_2_1_50_1","doi-asserted-by":"publisher","DOI":"10.1145\/3458864.3466628"},{"key":"e_1_3_2_1_51_1","volume-title":"SoK: Machine Learning with Confidential Computing. arXiv preprint arXiv:2208.10134","author":"Mo Fan","year":"2022","unstructured":"Fan Mo , Zahra Tarkhani , and Hamed Haddadi . 2022. SoK: Machine Learning with Confidential Computing. arXiv preprint arXiv:2208.10134 ( 2022 ). Fan Mo, Zahra Tarkhani, and Hamed Haddadi. 2022. SoK: Machine Learning with Confidential Computing. arXiv preprint arXiv:2208.10134 (2022)."},{"key":"e_1_3_2_1_52_1","doi-asserted-by":"publisher","DOI":"10.1109\/SP.2017.12"},{"key":"e_1_3_2_1_53_1","doi-asserted-by":"publisher","DOI":"10.1109\/SP.2008.33"},{"key":"e_1_3_2_1_54_1","doi-asserted-by":"publisher","DOI":"10.1109\/SP.2009.22"},{"key":"e_1_3_2_1_55_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jobe.2019.100832"},{"key":"e_1_3_2_1_56_1","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v35i17.17746"},{"key":"e_1_3_2_1_58_1","volume-title":"25th USENIX Security Symposium (USENIX Security 16)","author":"Ohrimenko Olga","year":"2016","unstructured":"Olga Ohrimenko , Felix Schuster , C\u00e9dric Fournet , Aastha Mehta , Sebastian Nowozin , Kapil Vaswani , and Manuel Costa . 2016 . Oblivious {Multi-Party} machine learning on trusted processors . In 25th USENIX Security Symposium (USENIX Security 16) . 619--636. Olga Ohrimenko, Felix Schuster, C\u00e9dric Fournet, Aastha Mehta, Sebastian Nowozin, Kapil Vaswani, and Manuel Costa. 2016. Oblivious {Multi-Party} machine learning on trusted processors. In 25th USENIX Security Symposium (USENIX Security 16). 619--636."},{"key":"e_1_3_2_1_59_1","doi-asserted-by":"publisher","DOI":"10.3390\/fi12050077"},{"key":"e_1_3_2_1_60_1","doi-asserted-by":"publisher","DOI":"10.1109\/ISC2.2018.8656952"},{"volume-title":"The Shapley value: essays in honor of Lloyd S. Shapley","author":"Roth Alvin E","key":"e_1_3_2_1_61_1","unstructured":"Alvin E Roth . 1988. The Shapley value: essays in honor of Lloyd S. Shapley . Cambridge University Press . Alvin E Roth. 1988. The Shapley value: essays in honor of Lloyd S. Shapley. Cambridge University Press."},{"key":"e_1_3_2_1_62_1","volume-title":"The Shapley Value in Machine Learning. arXiv preprint arXiv:2202.05594","author":"Rozemberczki Benedek","year":"2022","unstructured":"Benedek Rozemberczki , Lauren Watson , P\u00e9ter Bayer , Hao-Tsung Yang , Oliv\u00e9r Kiss , Sebastian Nilsson , and Rik Sarkar . 2022. The Shapley Value in Machine Learning. arXiv preprint arXiv:2202.05594 ( 2022 ). Benedek Rozemberczki, Lauren Watson, P\u00e9ter Bayer, Hao-Tsung Yang, Oliv\u00e9r Kiss, Sebastian Nilsson, and Rik Sarkar. 2022. The Shapley Value in Machine Learning. arXiv preprint arXiv:2202.05594 (2022)."},{"key":"e_1_3_2_1_63_1","unstructured":"Seagate. 2020. Rethink Data. https:\/\/www.seagate.com\/files\/www-content\/our-story\/rethink-data\/files\/Rethink_Data_Report_2020.pdf. Seagate. 2020. Rethink Data. https:\/\/www.seagate.com\/files\/www-content\/our-story\/rethink-data\/files\/Rethink_Data_Report_2020.pdf."},{"key":"e_1_3_2_1_64_1","doi-asserted-by":"publisher","DOI":"10.1109\/Blockchain53845.2021.00062"},{"key":"e_1_3_2_1_65_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.future.2020.05.047"},{"key":"e_1_3_2_1_66_1","doi-asserted-by":"crossref","unstructured":"Oana Stan Vincent Thouvenot Aymen Boudguiga Katarzyna Kapusta Martin Zuber and Renaud Sirdey. 2022. A Secure Federated Learning: Analysis of Different Cryptographic Tools. In SECRYPT. Oana Stan Vincent Thouvenot Aymen Boudguiga Katarzyna Kapusta Martin Zuber and Renaud Sirdey. 2022. A Secure Federated Learning: Analysis of Different Cryptographic Tools. In SECRYPT.","DOI":"10.5220\/0011322700003283"},{"key":"e_1_3_2_1_67_1","doi-asserted-by":"publisher","DOI":"10.1142\/S0218488502001648"},{"key":"e_1_3_2_1_68_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-44337-5_8"},{"key":"e_1_3_2_1_69_1","doi-asserted-by":"publisher","DOI":"10.1109\/ALLERTON.2019.8919758"},{"key":"e_1_3_2_1_70_1","doi-asserted-by":"publisher","DOI":"10.1109\/Blockchain.2019.00031"},{"key":"e_1_3_2_1_71_1","volume-title":"Falcon: Honest-majority maliciously secure framework for private deep learning. arXiv preprint arXiv:2004.02229","author":"Wagh Sameer","year":"2020","unstructured":"Sameer Wagh , Shruti Tople , Fabrice Benhamouda , Eyal Kushilevitz , Prateek Mittal , and Tal Rabin . 2020 . Falcon: Honest-majority maliciously secure framework for private deep learning. arXiv preprint arXiv:2004.02229 (2020). Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek Mittal, and Tal Rabin. 2020. Falcon: Honest-majority maliciously secure framework for private deep learning. arXiv preprint arXiv:2004.02229 (2020)."},{"key":"e_1_3_2_1_72_1","volume-title":"Proceedings of the 39th International Conference on Machine Learning (Proceedings of Machine Learning Research","volume":"24176","author":"Wu Zhaoxuan","year":"2022","unstructured":"Zhaoxuan Wu , Yao Shu , and Bryan Kian Hsiang Low . 2022 . DAVINZ: Data Valuation using Deep Neural Networks at Initialization . In Proceedings of the 39th International Conference on Machine Learning (Proceedings of Machine Learning Research , Vol. 162), Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (Eds.). PMLR, 24150-- 24176 . https:\/\/proceedings.mlr.press\/v162\/wu22j.html Zhaoxuan Wu, Yao Shu, and Bryan Kian Hsiang Low. 2022. DAVINZ: Data Valuation using Deep Neural Networks at Initialization. In Proceedings of the 39th International Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 162), Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (Eds.). PMLR, 24150--24176. https:\/\/proceedings.mlr.press\/v162\/wu22j.html"},{"key":"e_1_3_2_1_73_1","first-page":"10837","article-title":"Validation free and replication robust volume-based data valuation","volume":"34","author":"Xu Xinyi","year":"2021","unstructured":"Xinyi Xu , Zhaoxuan Wu , Chuan Sheng Foo , and Bryan Kian Hsiang Low . 2021 . Validation free and replication robust volume-based data valuation . Advances in Neural Information Processing Systems 34 (2021), 10837 -- 10848 . Xinyi Xu, Zhaoxuan Wu, Chuan Sheng Foo, and Bryan Kian Hsiang Low. 2021. Validation free and replication robust volume-based data valuation. Advances in Neural Information Processing Systems 34 (2021), 10837--10848.","journal-title":"Advances in Neural Information Processing Systems"},{"key":"e_1_3_2_1_74_1","doi-asserted-by":"publisher","DOI":"10.1145\/3298981"},{"key":"e_1_3_2_1_75_1","volume-title":"Proceedings of the 37th International Conference on Machine Learning (Proceedings of Machine Learning Research","author":"Yoon Jinsung","year":"2020","unstructured":"Jinsung Yoon , Sercan Arik , and Tomas Pfister . 2020 . Data Valuation using Reinforcement Learning . In Proceedings of the 37th International Conference on Machine Learning (Proceedings of Machine Learning Research , Vol. 119), Hal Daum\u00e9 III and Aarti Singh (Eds.). PMLR, 10842--10851. https:\/\/proceedings.mlr.press\/v119\/yoon20a.html Jinsung Yoon, Sercan Arik, and Tomas Pfister. 2020. Data Valuation using Reinforcement Learning. In Proceedings of the 37th International Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 119), Hal Daum\u00e9 III and Aarti Singh (Eds.). PMLR, 10842--10851. https:\/\/proceedings.mlr.press\/v119\/yoon20a.html"},{"key":"e_1_3_2_1_76_1","volume-title":"Systematic review on fully homomorphic encryption scheme and its application. Recent Advances in Intelligent Systems and Smart Applications","author":"Yousuf Hana","year":"2021","unstructured":"Hana Yousuf , Michael Lahzi , Said A Salloum , and Khaled Shaalan . 2021. Systematic review on fully homomorphic encryption scheme and its application. Recent Advances in Intelligent Systems and Smart Applications ( 2021 ), 537--551. Hana Yousuf, Michael Lahzi, Said A Salloum, and Khaled Shaalan. 2021. Systematic review on fully homomorphic encryption scheme and its application. Recent Advances in Intelligent Systems and Smart Applications (2021), 537--551."},{"key":"e_1_3_2_1_77_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCCN52240.2021.9522165"},{"key":"e_1_3_2_1_78_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVCBT.2018.00007"}],"event":{"name":"CoNEXT '22: The 18th International Conference on emerging Networking EXperiments and Technologies","sponsor":["SIGCOMM ACM Special Interest Group on Data Communication"],"location":"Rome Italy","acronym":"CoNEXT '22"},"container-title":["Proceedings of the 1st International Workshop on Data Economy"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3565011.3569060","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,11]],"date-time":"2023-01-11T21:18:04Z","timestamp":1673471884000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3565011.3569060"}},"subtitle":["narrowing the gap between academia and industry"],"short-title":[],"issued":{"date-parts":[[2022,12,6]]},"references-count":77,"alternative-id":["10.1145\/3565011.3569060","10.1145\/3565011"],"URL":"https:\/\/doi.org\/10.1145\/3565011.3569060","relation":{},"subject":[],"published":{"date-parts":[[2022,12,6]]},"assertion":[{"value":"2022-12-06","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}