{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T22:05:11Z","timestamp":1730325911399,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":55,"publisher":"ACM","license":[{"start":{"date-parts":[[2023,1,24]],"date-time":"2023-01-24T00:00:00Z","timestamp":1674518400000},"content-version":"vor","delay-in-days":79,"URL":"http:\/\/www.acm.org\/publications\/policies\/copyright_policy#Background"}],"funder":[{"DOI":"10.13039\/100000001","name":"NSF (National Science Foundation)","doi-asserted-by":"publisher","award":["2211459-CNS"],"id":[{"id":"10.13039\/100000001","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2022,11,6]]},"DOI":"10.1145\/3560905.3568527","type":"proceedings-article","created":{"date-parts":[[2023,1,24]],"date-time":"2023-01-24T23:37:10Z","timestamp":1674603430000},"page":"291-304","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":2,"title":["Enhancing Video Analytics Accuracy via Real-time Automated Camera Parameter Tuning"],"prefix":"10.1145","author":[{"given":"Sibendu","family":"Paul","sequence":"first","affiliation":[{"name":"Purdue University"}]},{"given":"Kunal","family":"Rao","sequence":"additional","affiliation":[{"name":"NEC Laboratories America, Inc."}]},{"given":"Giuseppe","family":"Coviello","sequence":"additional","affiliation":[{"name":"NEC Laboratories America, Inc."}]},{"given":"Murugan","family":"Sankaradas","sequence":"additional","affiliation":[{"name":"NEC Laboratories America, Inc."}]},{"given":"Oliver","family":"Po","sequence":"additional","affiliation":[{"name":"NEC Laboratories America, Inc."}]},{"given":"Y. Charlie","family":"Hu","sequence":"additional","affiliation":[{"name":"Purdue University"}]},{"given":"Srimat","family":"Chakradhar","sequence":"additional","affiliation":[{"name":"NEC Laboratories America, Inc."}]}],"member":"320","published-online":{"date-parts":[[2023,1,24]]},"reference":[{"key":"e_1_3_2_2_1_1","unstructured":"NATS: Connective Technology for Adaptive Edge & Distributed Systems. https:\/\/nats.io\/."},{"key":"e_1_3_2_2_2_1","unstructured":"Open Source Computer Vision Library. https:\/\/opencv.org\/."},{"key":"e_1_3_2_2_3_1","unstructured":"Zeromq: An open-source universal messaging library. https:\/\/zeromq.org\/."},{"volume-title":"https:\/\/www.webmproject.org\/vp9\/","year":"2017","key":"e_1_3_2_2_4_1","unstructured":"Vp9. https:\/\/www.webmproject.org\/vp9\/, 2017."},{"volume-title":"http:\/\/www.videolan.org\/developers\/x264.html","year":"2021","key":"e_1_3_2_2_5_1","unstructured":"x264. http:\/\/www.videolan.org\/developers\/x264.html, 2021."},{"key":"e_1_3_2_2_6_1","volume-title":"International Conference on Parallel Architectures and Compilation Techniques","author":"Ansel J.","year":"2014","unstructured":"J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom, U.-M. O'Reilly, and S. Amarasinghe. Opentuner: An extensible framework for program auto-tuning. In International Conference on Parallel Architectures and Compilation Techniques, Edmonton, Canada, Aug 2014."},{"key":"e_1_3_2_2_7_1","volume-title":"July 20","author":"Bayer B. E.","year":"1976","unstructured":"B. E. Bayer. Color imaging array, July 20 1976. US Patent 3,971,065."},{"key":"e_1_3_2_2_8_1","doi-asserted-by":"publisher","DOI":"10.2352\/ISSN.2169-4672.2007.1.0.10"},{"key":"e_1_3_2_2_9_1","volume-title":"correlation-and-regression. https:\/\/www.bmj.com\/about-bmj\/resources-readers\/publications\/statistics-square-one\/11-correlation-and-regression","author":"T.","year":"2019","unstructured":"T. BMJ. correlation-and-regression. https:\/\/www.bmj.com\/about-bmj\/resources-readers\/publications\/statistics-square-one\/11-correlation-and-regression, 2019."},{"key":"e_1_3_2_2_10_1","first-page":"406","volume-title":"Proceedings of Machine Learning and Systems","volume":"1","author":"Canel C.","year":"2019","unstructured":"C. Canel, T. Kim, G. Zhou, C. Li, H. Lim, D. G. Andersen, M. Kaminsky, and S. Dulloor. Scaling Video Analytics on Constrained Edge Nodes. In A. Talwalkar, V. Smith, and M. Zaharia, editors, Proceedings of Machine Learning and Systems, volume 1, pages 406--417, 2019."},{"key":"e_1_3_2_2_11_1","first-page":"325","volume-title":"Investigating Low Level Features in CNN for Traffic Sign Detection and Recognition. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC)","author":"Chen E. H.","year":"2019","unstructured":"E. H. Chen, P. R\u00f6thig, J. Zeisler, and D. Burschka. Investigating Low Level Features in CNN for Traffic Sign Detection and Recognition. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pages 325--332, 2019."},{"key":"e_1_3_2_2_12_1","doi-asserted-by":"publisher","DOI":"10.1145\/2809695.2809711"},{"key":"e_1_3_2_2_13_1","unstructured":"CISCO. Cisco Video Surveillance IP Cameras. https:\/\/www.cisco.com\/c\/en\/us\/products\/physical-security\/video-surveillance-ip-cameras\/index.html."},{"key":"e_1_3_2_2_14_1","unstructured":"A. Clark and Contributors. Pillow library. https:\/\/pillow.readthedocs.io\/en\/stable\/."},{"key":"e_1_3_2_2_15_1","unstructured":"CNET. How 5G aims to end network latency. CNET_5G_network_latency_time 2019."},{"key":"e_1_3_2_2_16_1","unstructured":"cocoapi github. pycocotools. https:\/\/github.com\/cocodataset\/cocoapi\/tree\/master\/PythonAPI\/pycocotools."},{"key":"e_1_3_2_2_17_1","unstructured":"A. Communication. AXIS Network Cameras. https:\/\/www.axis.com\/products\/network-cameras."},{"key":"e_1_3_2_2_18_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.proeng.2013.09.086"},{"key":"e_1_3_2_2_19_1","volume-title":"RetinaFace: Single-stage Dense Face Localisation in the Wild. In arxiv","author":"Deng J.","year":"2019","unstructured":"J. Deng, J. Guo, Z. Yuxiang, J. Yu, I. Kotsia, and S. Zafeiriou. RetinaFace: Single-stage Dense Face Localisation in the Wild. In arxiv, 2019."},{"key":"e_1_3_2_2_20_1","volume-title":"Dirty Pixels: Towards End-to-end Image Processing and Perception. ACM Transactions on Graphics (TOG), 40(3):1--15","author":"Diamond S.","year":"2021","unstructured":"S. Diamond, V. Sitzmann, F. Julca-Aguilar, S. Boyd, G. Wetzstein, and F. Heide. Dirty Pixels: Towards End-to-end Image Processing and Perception. ACM Transactions on Graphics (TOG), 40(3):1--15, 2021."},{"key":"e_1_3_2_2_21_1","first-page":"2027","author":"Gaikwad V.","year":"2021","unstructured":"V. Gaikwad and R. Rake. Video Analytics Market Statistics: 2027, 2021.","journal-title":"Video Analytics Market Statistics"},{"key":"e_1_3_2_2_22_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.array.2021.100057"},{"key":"e_1_3_2_2_23_1","doi-asserted-by":"publisher","DOI":"10.1117\/12.477378"},{"key":"e_1_3_2_2_24_1","first-page":"269","volume-title":"Focus: Querying Large Video Datasets with Low Latency and Low Cost. In 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18)","author":"Hsieh K.","year":"2018","unstructured":"K. Hsieh, G. Ananthanarayanan, P. Bodik, S. Venkataraman, P. Bahl, M. Philipose, P. B. Gibbons, and O. Mutlu. Focus: Querying Large Video Datasets with Low Latency and Low Cost. In 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18), pages 269--286, Carlsbad, CA, Oct. 2018. USENIX Association."},{"key":"e_1_3_2_2_25_1","unstructured":"i PRO. i-PRO Network Camera. http:\/\/i-pro.com\/global\/en\/surveillance."},{"key":"e_1_3_2_2_26_1","first-page":"132","volume-title":"Application-Aware IoT Camera Virtualization for Video Analytics Edge Computing. 2018 IEEE\/ACM Symposium on Edge Computing (SEC)","author":"Jang S. Y.","year":"2018","unstructured":"S. Y. Jang, Y. Lee, B. Shin, and D. Lee. Application-Aware IoT Camera Virtualization for Video Analytics Edge Computing. 2018 IEEE\/ACM Symposium on Edge Computing (SEC), pages 132--144, 2018."},{"key":"e_1_3_2_2_27_1","doi-asserted-by":"publisher","DOI":"10.1145\/3230543.3230574"},{"key":"e_1_3_2_2_28_1","volume-title":"TensorFlow Edge TPU and OpenVINO Export and Inference","author":"Jocher G.","year":"2022","unstructured":"G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, NanoCode012, Y. Kwon, TaoXie, J. Fang, imyhxy, K. Michael, Lorna, A. V, D. Montes, J. Nadar, Laughing, tkianai, yxNONG, P. Skalski, Z. Wang, A. Hogan, C. Fati, L. Mammana, AlexWang1900, D. Patel, D. Yiwei, F. You, J. Hajek, L. Diaconu, and M. T. Minh. ultralytics\/yolov5: v6.1 - TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference, Feb. 2022."},{"key":"e_1_3_2_2_29_1","doi-asserted-by":"publisher","DOI":"10.14778\/3137628.3137664"},{"key":"e_1_3_2_2_30_1","volume-title":"Real-Time Video Inference on Edge Devices via Adaptive Model Streaming. arXiv preprint arXiv:2006.06628","author":"Khani M.","year":"2020","unstructured":"M. Khani, P. Hamadanian, A. Nasr-Esfahany, and M. Alizadeh. Real-Time Video Inference on Edge Devices via Adaptive Model Streaming. arXiv preprint arXiv:2006.06628, 2020."},{"key":"e_1_3_2_2_31_1","volume-title":"Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980","author":"Kingma D. P.","year":"2014","unstructured":"D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014."},{"key":"e_1_3_2_2_32_1","first-page":"1097","volume-title":"Advances in neural information processing systems","author":"Krizhevsky A.","year":"2012","unstructured":"A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097--1105, 2012."},{"key":"e_1_3_2_2_33_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2011.6126543"},{"key":"e_1_3_2_2_34_1","doi-asserted-by":"publisher","DOI":"10.1145\/3387514.3405874"},{"key":"e_1_3_2_2_35_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-10602-1_48"},{"key":"e_1_3_2_2_36_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00231"},{"key":"e_1_3_2_2_37_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.425"},{"key":"e_1_3_2_2_38_1","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2012.2214050"},{"key":"e_1_3_2_2_39_1","doi-asserted-by":"publisher","DOI":"10.5555\/1888028.1888059"},{"key":"e_1_3_2_2_40_1","volume-title":"Automatic ISP image quality tuning using non-linear optimization","author":"Nishimura J.","year":"2019","unstructured":"J. Nishimura, T. Gerasimow, S. Rao, A. Sutic, C.-T. Wu, and G. Michael. Automatic ISP image quality tuning using non-linear optimization, 2019."},{"key":"e_1_3_2_2_41_1","unstructured":"A. Padmanabhan A. P. Iyer G. Ananthanarayanan Y. Shu N. Karianakis G. H. Xu and R. Netravali. Towards Memory-Efficient Inference in Edge Video Analytics."},{"key":"e_1_3_2_2_42_1","volume-title":"Face Recognition Vendor Test (FRVT). https:\/\/nvlpubs.nist.gov\/nistpubs\/ir\/2019\/NIST.IR.8271.pdf","author":"Patrick Grother M. N.","year":"2019","unstructured":"M. N. Patrick Grother and K. Hanaoka. Face Recognition Vendor Test (FRVT). https:\/\/nvlpubs.nist.gov\/nistpubs\/ir\/2019\/NIST.IR.8271.pdf, 2019."},{"key":"e_1_3_2_2_43_1","first-page":"135","volume-title":"2021 IEEE\/ACM Symposium on Edge Computing (SEC)","author":"Paul S.","year":"2021","unstructured":"S. Paul, U. Drolia, Y. C. Hu, and S. T. Chakradhar. Aqua: Analytical quality assessment for optimizing video analytics systems. In 2021 IEEE\/ACM Symposium on Edge Computing (SEC), pages 135--147. IEEE, 2021."},{"key":"e_1_3_2_2_44_1","doi-asserted-by":"publisher","DOI":"10.1364\/JOSAA.7.002032"},{"volume-title":"How 5G low latency improves your mobile experiences. Qualcomm_5G_low-latency_improves_mobile_experience","year":"2019","key":"e_1_3_2_2_45_1","unstructured":"Qualcomm. How 5G low latency improves your mobile experiences. Qualcomm_5G_low-latency_improves_mobile_experience, 2019."},{"key":"e_1_3_2_2_46_1","doi-asserted-by":"publisher","DOI":"10.1109\/MSP.2005.1407713"},{"volume-title":"Pearson correlation coefficient. https:\/\/www.statisticssolutions.com\/free-resources\/directory-of-statistical-analyses\/pearsons-correlation-coefficient\/","year":"2019","key":"e_1_3_2_2_47_1","unstructured":"Statisticssolutions. Pearson correlation coefficient. https:\/\/www.statisticssolutions.com\/free-resources\/directory-of-statistical-analyses\/pearsons-correlation-coefficient\/, 2019."},{"key":"e_1_3_2_2_48_1","doi-asserted-by":"publisher","DOI":"10.1109\/TNN.1998.712192"},{"key":"e_1_3_2_2_49_1","first-page":"2818","volume-title":"Rethinking the Inception Architecture for Computer Vision. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","author":"Szegedy C.","year":"2016","unstructured":"C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the Inception Architecture for Computer Vision. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2818--2826, 2016."},{"key":"e_1_3_2_2_50_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01079"},{"key":"e_1_3_2_2_51_1","first-page":"279","volume-title":"Machine Learning","author":"Watkins C. J. C. H.","year":"1992","unstructured":"C. J. C. H. Watkins and P. Dayan. Q-learning. In Machine Learning, pages 279--292, 1992."},{"key":"e_1_3_2_2_52_1","doi-asserted-by":"publisher","DOI":"10.1023\/A:1007562800292"},{"key":"e_1_3_2_2_53_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICIP.2019.8803607"},{"key":"e_1_3_2_2_54_1","doi-asserted-by":"publisher","DOI":"10.1145\/3230543.3230554"},{"key":"e_1_3_2_2_55_1","first-page":"377","volume-title":"14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17)","author":"Zhang H.","year":"2017","unstructured":"H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and M. J. Freedman. Live Video Analytics at Scale with Approximation and Delay-Tolerance. In 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17), pages 377--392, Boston, MA, Mar. 2017. USENIX Association."}],"event":{"name":"SenSys '22: The 20th ACM Conference on Embedded Networked Sensor Systems","sponsor":["SIGMETRICS ACM Special Interest Group on Measurement and Evaluation","SIGCOMM ACM Special Interest Group on Data Communication","SIGMOBILE ACM Special Interest Group on Mobility of Systems, Users, Data and Computing","SIGOPS ACM Special Interest Group on Operating Systems","SIGBED ACM Special Interest Group on Embedded Systems","SIGARCH ACM Special Interest Group on Computer Architecture"],"location":"Boston Massachusetts","acronym":"SenSys '22"},"container-title":["Proceedings of the 20th ACM Conference on Embedded Networked Sensor Systems"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3560905.3568527","content-type":"application\/pdf","content-version":"vor","intended-application":"syndication"},{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3560905.3568527","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,26]],"date-time":"2024-03-26T22:37:33Z","timestamp":1711492653000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3560905.3568527"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,11,6]]},"references-count":55,"alternative-id":["10.1145\/3560905.3568527","10.1145\/3560905"],"URL":"https:\/\/doi.org\/10.1145\/3560905.3568527","relation":{},"subject":[],"published":{"date-parts":[[2022,11,6]]},"assertion":[{"value":"2023-01-24","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}