{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,7]],"date-time":"2024-09-07T04:05:30Z","timestamp":1725681930023},"publisher-location":"New York, NY, USA","reference-count":13,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2022,10,10]]},"DOI":"10.1145\/3551349.3559497","type":"proceedings-article","created":{"date-parts":[[2023,1,6]],"date-time":"2023-01-06T01:43:54Z","timestamp":1672969434000},"page":"1-5","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":0,"title":["Code Understanding Linter to Detect Variable Misuse"],"prefix":"10.1145","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-9810-3635","authenticated-orcid":false,"given":"Yeonhee","family":"Ryou","sequence":"first","affiliation":[{"name":"Samsung Research, Samsung Electronics, Korea, South - Republic of Korea"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8872-3849","authenticated-orcid":false,"given":"Sangwoo","family":"Joh","sequence":"additional","affiliation":[{"name":"Samsung Research, Samsung Electronics, Republic of Korea"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4845-5560","authenticated-orcid":false,"given":"Joonmo","family":"Yang","sequence":"additional","affiliation":[{"name":"Samsung Research, Samsung Electronics, Republic of Korea"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2493-9448","authenticated-orcid":false,"given":"Sujin","family":"Kim","sequence":"additional","affiliation":[{"name":"Samsung Research, Samsung Electronics, Republic of Korea"}]},{"given":"Youil","family":"Kim","sequence":"additional","affiliation":[{"name":"Samsung Research, Samsung Electronics, Republic of Korea"}]}],"member":"320","published-online":{"date-parts":[[2023,1,5]]},"reference":[{"doi-asserted-by":"publisher","key":"e_1_3_2_1_1_1","DOI":"10.1109\/ICSE.2012.6227135"},{"key":"e_1_3_2_1_2_1","volume-title":"International Conference on Machine Learning. PMLR, 5110\u20135121","author":"Kanade Aditya","year":"2020","unstructured":"Aditya Kanade , Petros Maniatis , Gogul Balakrishnan , and Kensen Shi . 2020 . Learning and evaluating contextual embedding of source code . In International Conference on Machine Learning. PMLR, 5110\u20135121 . Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. 2020. Learning and evaluating contextual embedding of source code. In International Conference on Machine Learning. PMLR, 5110\u20135121."},{"doi-asserted-by":"crossref","unstructured":"Hyungjin Kim Yonghwi Kwon Hyukin Kwon Yeonhee Ryou Sangwoo Joh Taeksu Kim and Chul-Joo Kim. 2022. A Unified Code Review Automation for Large-scale Industry with Diverse Development Environments. (2022) 23-24. https:\/\/doi.org\/10.1109\/ICSE-SEIP55303.2022.9793899 10.1109\/ICSE-SEIP55303.2022.9793899","key":"#cr-split#-e_1_3_2_1_3_1.1","DOI":"10.1109\/ICSE-SEIP55303.2022.9793899"},{"doi-asserted-by":"crossref","unstructured":"Hyungjin Kim Yonghwi Kwon Hyukin Kwon Yeonhee Ryou Sangwoo Joh Taeksu Kim and Chul-Joo Kim. 2022. A Unified Code Review Automation for Large-scale Industry with Diverse Development Environments. (2022) 23-24. https:\/\/doi.org\/10.1109\/ICSE-SEIP55303.2022.9793899","key":"#cr-split#-e_1_3_2_1_3_1.2","DOI":"10.1109\/ICSE-SEIP55303.2022.9793899"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_4_1","DOI":"10.1109\/ICSE-SEIP52600.2021.00009"},{"key":"e_1_3_2_1_5_1","volume-title":"Codexglue: A machine learning benchmark dataset for code understanding and generation. arXiv preprint arXiv:2102.04664(2021).","author":"Lu Shuai","year":"2021","unstructured":"Shuai Lu , Daya Guo , Shuo Ren , Junjie Huang , Alexey Svyatkovskiy , Ambrosio Blanco , Colin Clement , Dawn Drain , Daxin Jiang , Duyu Tang , 2021 . Codexglue: A machine learning benchmark dataset for code understanding and generation. arXiv preprint arXiv:2102.04664(2021). Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, 2021. Codexglue: A machine learning benchmark dataset for code understanding and generation. arXiv preprint arXiv:2102.04664(2021)."},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_6_1","DOI":"10.1145\/3468264.3468623"},{"unstructured":"Colin Raffel Noam Shazeer Adam Roberts Katherine Lee Sharan Narang Michael Matena Yanqi Zhou Wei Li and Peter\u00a0J Liu. 2019. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683(2019). Colin Raffel Noam Shazeer Adam Roberts Katherine Lee Sharan Narang Michael Matena Yanqi Zhou Wei Li and Peter\u00a0J Liu. 2019. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683(2019).","key":"e_1_3_2_1_7_1"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_8_1","DOI":"10.1145\/3022671.2984041"},{"unstructured":"Shuo Ren Daya Guo Shuai Lu Long Zhou Shujie Liu Duyu Tang Neel Sundaresan Ming Zhou Ambrosio Blanco and Shuai Ma. 2020. Codebleu: a method for automatic evaluation of code synthesis. arXiv preprint arXiv:2009.10297(2020). Shuo Ren Daya Guo Shuai Lu Long Zhou Shujie Liu Duyu Tang Neel Sundaresan Ming Zhou Ambrosio Blanco and Shuai Ma. 2020. Codebleu: a method for automatic evaluation of code synthesis. arXiv preprint arXiv:2009.10297(2020).","key":"e_1_3_2_1_9_1"},{"doi-asserted-by":"crossref","unstructured":"Xin Wang Yasheng Wang Yao Wan Fei Mi Yitong Li Pingyi Zhou Jin Liu Hao Wu Xin Jiang and Qun Liu. 2022. Compilable Neural Code Generation with Compiler Feedback. arXiv preprint arXiv:2203.05132(2022). Xin Wang Yasheng Wang Yao Wan Fei Mi Yitong Li Pingyi Zhou Jin Liu Hao Wu Xin Jiang and Qun Liu. 2022. Compilable Neural Code Generation with Compiler Feedback. arXiv preprint arXiv:2203.05132(2022).","key":"e_1_3_2_1_10_1","DOI":"10.18653\/v1\/2022.findings-acl.2"},{"doi-asserted-by":"crossref","unstructured":"Yue Wang Weishi Wang Shafiq Joty and Steven\u00a0CH Hoi. 2021. Codet5: Identifier-aware unified pre-trained encoder-decoder models for code understanding and generation. arXiv preprint arXiv:2109.00859(2021). Yue Wang Weishi Wang Shafiq Joty and Steven\u00a0CH Hoi. 2021. Codet5: Identifier-aware unified pre-trained encoder-decoder models for code understanding and generation. arXiv preprint arXiv:2109.00859(2021).","key":"e_1_3_2_1_11_1","DOI":"10.18653\/v1\/2021.emnlp-main.685"},{"doi-asserted-by":"crossref","unstructured":"Zhou Yang Jieke Shi Junda He and David Lo. 2022. Natural Attack for Pre-trained Models of Code. arXiv preprint arXiv:2201.08698(2022). Zhou Yang Jieke Shi Junda He and David Lo. 2022. Natural Attack for Pre-trained Models of Code. arXiv preprint arXiv:2201.08698(2022).","key":"e_1_3_2_1_12_1","DOI":"10.1145\/3510003.3510146"}],"event":{"acronym":"ASE '22","name":"ASE '22: 37th IEEE\/ACM International Conference on Automated Software Engineering","location":"Rochester MI USA"},"container-title":["Proceedings of the 37th IEEE\/ACM International Conference on Automated Software Engineering"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3551349.3559497","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,10,10]],"date-time":"2023-10-10T12:06:05Z","timestamp":1696939565000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3551349.3559497"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,10,10]]},"references-count":13,"alternative-id":["10.1145\/3551349.3559497","10.1145\/3551349"],"URL":"https:\/\/doi.org\/10.1145\/3551349.3559497","relation":{},"subject":[],"published":{"date-parts":[[2022,10,10]]},"assertion":[{"value":"2023-01-05","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}