{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T01:35:46Z","timestamp":1740101746696,"version":"3.37.3"},"publisher-location":"New York, NY, USA","reference-count":88,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2023,4,30]]},"DOI":"10.1145\/3543507.3583370","type":"proceedings-article","created":{"date-parts":[[2023,4,26]],"date-time":"2023-04-26T23:30:51Z","timestamp":1682551851000},"page":"1638-1649","update-policy":"https:\/\/doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":2,"title":["Fast and Multi-aspect Mining of Complex Time-stamped Event Streams"],"prefix":"10.1145","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-7123-4259","authenticated-orcid":false,"given":"Kota","family":"Nakamura","sequence":"first","affiliation":[{"name":"SANKEN, Osaka University, Japan"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-3566-7721","authenticated-orcid":false,"given":"Yasuko","family":"Matsubara","sequence":"additional","affiliation":[{"name":"SANKEN, Osaka University, Japan"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-4202-4513","authenticated-orcid":false,"given":"Koki","family":"Kawabata","sequence":"additional","affiliation":[{"name":"SANKEN, Osaka University, Japan"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-8244-282X","authenticated-orcid":false,"given":"Yuhei","family":"Umeda","sequence":"additional","affiliation":[{"name":"AI Lab., Fujitsu, Japan"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-5214-1265","authenticated-orcid":false,"given":"Yuichiro","family":"Wada","sequence":"additional","affiliation":[{"name":"AI Lab., Fujitsu, Japan and AIP, RIKEN, Japan"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-7258-2642","authenticated-orcid":false,"given":"Yasushi","family":"Sakurai","sequence":"additional","affiliation":[{"name":"SANKEN, Osaka University, Japan"}]}],"member":"320","published-online":{"date-parts":[[2023,4,30]]},"reference":[{"key":"e_1_3_2_1_1_1","unstructured":"[n.d.]. CIDDS (Coburg Intrusion Detection Data Sets). https:\/\/www.hs-coburg.de\/forschung\/forschungsprojekte-oeffentlich\/informationstechnologie\/cidds-coburg-intrusion-detection-data-sets.html"},{"key":"e_1_3_2_1_2_1","unstructured":"[n.d.]. Citi Bike Trip Histories. https:\/\/ride.citibikenyc.com\/system-data"},{"key":"e_1_3_2_1_3_1","unstructured":"[n.d.]. eCommerce purchase history from electronics store. https:\/\/www.kaggle.com\/mkechinov\/ecommerce-purchase-history-from-electronics-store"},{"key":"e_1_3_2_1_4_1","unstructured":"[n.d.]. eCommerce purchase history from jewelry store. https:\/\/www.kaggle.com\/mkechinov\/ecommerce-purchase-history-from-jewelry-store"},{"key":"e_1_3_2_1_5_1","unstructured":"[n.d.]. KDD Cup 1999 Data. http:\/\/kdd.ics.uci.edu\/databases\/kddcup99\/kddcup99.html"},{"key":"e_1_3_2_1_6_1","unstructured":"[n.d.]. CubeScope. https:\/\/github.com\/kotaNakm\/CubeScope"},{"key":"e_1_3_2_1_7_1","unstructured":"[n.d.]. River:online machine learning in Python. https:\/\/riverml.xyz\/dev\/api\/cluster\/DBSTREAM\/"},{"key":"e_1_3_2_1_8_1","unstructured":"[n.d.]. TLC Trip Record Data. https:\/\/www1.nyc.gov\/site\/tlc\/about\/tlc-trip-record-data.page"},{"key":"e_1_3_2_1_9_1","unstructured":"[n.d.]. Traffic Data from Kyoto University\u2019s Honeypots. https:\/\/www.takakura.com\/Kyoto_data\/"},{"key":"e_1_3_2_1_10_1","unstructured":"2019. Predicting pregnancy using large-scale datafrom a women\u2019s health tracking mobile application. In WWW. 2999\u20133005."},{"key":"e_1_3_2_1_11_1","unstructured":"[11] 2020. https:\/\/www1.nyc.gov\/assets\/home\/downloads\/pdf\/executive-orders\/2020\/eeo-100.pdf."},{"key":"e_1_3_2_1_12_1","unstructured":"[12] 2020. https:\/\/www.state.gov\/wp-content\/uploads\/2020\/03\/2020-03-20-Notice-New-York-on-Pause-Order.pdf."},{"key":"e_1_3_2_1_13_1","unstructured":"[13] 2020. https:\/\/www.governor.ny.gov\/news\/governor-cuomo-announces-new-york-city-enter-phase-1-reopening-june-8-and-five-regions-enter."},{"key":"e_1_3_2_1_14_1","doi-asserted-by":"crossref","unstructured":"Charu\u00a0C. Aggarwal Jiawei Han Jianyong Wang and Philip\u00a0S. Yu. 2003. A Framework for Clustering Evolving Data Streams. In VLDB. 81\u201392.","DOI":"10.1016\/B978-012722442-8\/50016-1"},{"key":"e_1_3_2_1_15_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10618-014-0365-y"},{"key":"e_1_3_2_1_16_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-06605-9_23"},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"crossref","unstructured":"Inci\u00a0M. Baytas Cao Xiao Xi Zhang Fei Wang Anil\u00a0K. Jain and Jiayu Zhou. 2017. Patient Subtyping via Time-Aware LSTM Networks. In KDD. 65\u201374.","DOI":"10.1145\/3097983.3097997"},{"key":"e_1_3_2_1_18_1","doi-asserted-by":"crossref","unstructured":"Alex Beutel Kenton Murray Christos Faloutsos and Alexander\u00a0J Smola. 2014. Cobafi: collaborative bayesian filtering. In WWW. 97\u2013108.","DOI":"10.1145\/2566486.2568040"},{"key":"e_1_3_2_1_19_1","doi-asserted-by":"crossref","unstructured":"Siddharth Bhatia Arjit Jain Pan Li Ritesh Kumar and Bryan Hooi. 2021. MStream: Fast Anomaly Detection in Multi-Aspect Streams. In WWW. ACM \/ IW3C2 3371\u20133382.","DOI":"10.1145\/3442381.3450023"},{"key":"e_1_3_2_1_20_1","doi-asserted-by":"crossref","unstructured":"Siddharth Bhatia Arjit Jain Pan Li Ritesh Kumar and Bryan Hooi. 2021. MStream: Fast Anomaly Detection in Multi-Aspect Streams. In WWW. 3371\u20133382.","DOI":"10.1145\/3442381.3450023"},{"key":"e_1_3_2_1_21_1","doi-asserted-by":"publisher","DOI":"10.1145\/3485447.3512221"},{"key":"e_1_3_2_1_22_1","volume-title":"Latent dirichlet allocation. the Journal of machine Learning research 3","author":"Blei M","year":"2003","unstructured":"David\u00a0M Blei, Andrew\u00a0Y Ng, and Michael\u00a0I Jordan. 2003. Latent dirichlet allocation. the Journal of machine Learning research 3 (2003), 993\u20131022."},{"key":"e_1_3_2_1_23_1","doi-asserted-by":"publisher","DOI":"10.1145\/1297332.1297334"},{"key":"e_1_3_2_1_24_1","doi-asserted-by":"publisher","DOI":"10.1145\/342009.335388"},{"key":"e_1_3_2_1_25_1","doi-asserted-by":"publisher","DOI":"10.1145\/1541880.1541882"},{"key":"e_1_3_2_1_26_1","doi-asserted-by":"crossref","unstructured":"Pudi Chen Shenghua Liu Chuan Shi Bryan Hooi Bai Wang and Xueqi Cheng. 2018. NeuCast: Seasonal Neural Forecast of Power Grid Time Series.. In IJCAI. 3315\u20133321.","DOI":"10.24963\/ijcai.2018\/460"},{"key":"e_1_3_2_1_27_1","volume-title":"Hashing for adaptive real-time graph stream classification with concept drifts","author":"Chi Lianhua","year":"2017","unstructured":"Lianhua Chi, Bin Li, Xingquan Zhu, Shirui Pan, and Ling Chen. 2017. Hashing for adaptive real-time graph stream classification with concept drifts. IEEE transactions on cybernetics 48, 5 (2017), 1591\u20131604."},{"key":"e_1_3_2_1_28_1","unstructured":"Eunjoon Cho Seth\u00a0A. Myers and Jure Leskovec. 2011. Friendship and mobility: user movement in location-based social networks. In KDD. 1082\u20131090."},{"key":"e_1_3_2_1_29_1","doi-asserted-by":"crossref","unstructured":"Gianmarco De\u00a0Francisci\u00a0Morales Albert Bifet Latifur Khan Joao Gama and Wei Fan. 2016. Iot big data stream mining. In KDD. 2119\u20132120.","DOI":"10.1145\/2939672.2945385"},{"key":"e_1_3_2_1_30_1","doi-asserted-by":"crossref","unstructured":"Shohreh Deldari Daniel\u00a0V. Smith Hao Xue and Flora\u00a0D. Salim. 2021. Time Series Change Point Detection with Self-Supervised Contrastive Predictive Coding. In WWW. ACM \/ IW3C2 3124\u20133135.","DOI":"10.1145\/3442381.3449903"},{"key":"e_1_3_2_1_31_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2016.01.027"},{"key":"e_1_3_2_1_32_1","doi-asserted-by":"publisher","DOI":"10.1145\/3186728.3164136"},{"volume-title":"Advances in minimum description length: Theory and applications","author":"Gr\u00fcnwald D","key":"e_1_3_2_1_33_1","unstructured":"Peter\u00a0D Gr\u00fcnwald, In\u00a0Jae Myung, and Mark\u00a0A Pitt. 2005. Advances in minimum description length: Theory and applications. MIT press."},{"key":"e_1_3_2_1_34_1","volume-title":"Proceedings of the 33rd International Conference on International Conference on Machine Learning -","volume":"2721","author":"Guha Sudipto","year":"2016","unstructured":"Sudipto Guha, Nina Mishra, Gourav Roy, and Okke Schrijvers. 2016. Robust Random Cut Forest Based Anomaly Detection on Streams. In Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume 48(ICML\u201916). JMLR.org, 2712\u20132721."},{"key":"e_1_3_2_1_35_1","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2013.184"},{"key":"e_1_3_2_1_36_1","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2016.2522412"},{"key":"e_1_3_2_1_37_1","doi-asserted-by":"crossref","unstructured":"David Hallac Sagar Vare Stephen Boyd and Jure Leskovec. 2017. Toeplitz inverse covariance-based clustering of multivariate time series data. In KDD.","DOI":"10.24963\/ijcai.2018\/732"},{"volume-title":"Identification of outliers. Vol.\u00a011","author":"Hawkins M","key":"e_1_3_2_1_38_1","unstructured":"Douglas\u00a0M Hawkins. 1980. Identification of outliers. Vol.\u00a011. Springer."},{"key":"e_1_3_2_1_39_1","doi-asserted-by":"crossref","unstructured":"Takato Honda Yasuko Matsubara Ryo Neyama Mutsumi Abe and Yasushi Sakurai. 2019. Multi-aspect mining of complex sensor sequences. In ICDM.","DOI":"10.1109\/ICDM.2019.00040"},{"key":"e_1_3_2_1_40_1","doi-asserted-by":"crossref","unstructured":"Bryan Hooi Shenghua Liu Asim Smailagic and Christos Faloutsos. 2017. BeatLex: Summarizing and Forecasting Time Series with Patterns. In PKDD Vol.\u00a010535. 3\u201319.","DOI":"10.1007\/978-3-319-71246-8_1"},{"key":"e_1_3_2_1_41_1","volume-title":"SMF: Drift-aware matrix factorization with seasonal patterns. In SIAM. 621\u2013629.","author":"Hooi Bryan","year":"2019","unstructured":"Bryan Hooi, Kijung Shin, Shenghua Liu, and Christos Faloutsos. 2019. SMF: Drift-aware matrix factorization with seasonal patterns. In SIAM. 621\u2013629."},{"key":"e_1_3_2_1_42_1","doi-asserted-by":"publisher","DOI":"10.1145\/3437963.3441827"},{"key":"e_1_3_2_1_43_1","unstructured":"Tomoharu Iwata Shinji Watanabe Takeshi Yamada and Naonori Ueda. 2009. Topic tracking model for analyzing consumer purchase behavior. In IJCAI."},{"key":"e_1_3_2_1_44_1","doi-asserted-by":"publisher","DOI":"10.1145\/3447548.3467290"},{"key":"e_1_3_2_1_45_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICDM.2015.61"},{"key":"e_1_3_2_1_46_1","doi-asserted-by":"publisher","DOI":"10.1145\/3485447.3512037"},{"key":"e_1_3_2_1_47_1","doi-asserted-by":"crossref","unstructured":"Koki Kawabata Yasuko Matsubara Takato Honda and Yasushi Sakurai. 2020. Non-Linear Mining of Social Activities in Tensor Streams. In KDD. 2093\u20132102.","DOI":"10.1145\/3394486.3403260"},{"key":"e_1_3_2_1_48_1","doi-asserted-by":"crossref","unstructured":"Koki Kawabata Yasuko Matsubara and Yasushi Sakurai. 2019. Automatic sequential pattern mining in data streams. In CIKM. 1733\u20131742.","DOI":"10.1145\/3357384.3358002"},{"key":"e_1_3_2_1_49_1","volume-title":"Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114","author":"Kingma P","year":"2013","unstructured":"Diederik\u00a0P Kingma and Max Welling. 2013. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)."},{"key":"e_1_3_2_1_50_1","series-title":"SIAM review 51, 3","volume-title":"Tensor decompositions and applications","author":"Kolda G","year":"2009","unstructured":"Tamara\u00a0G Kolda and Brett\u00a0W Bader. 2009. Tensor decompositions and applications. SIAM review 51, 3 (2009), 455\u2013500."},{"key":"e_1_3_2_1_51_1","doi-asserted-by":"publisher","DOI":"10.1137\/1.9781611973440.11"},{"key":"e_1_3_2_1_52_1","doi-asserted-by":"crossref","unstructured":"Mathias Kraus and Stefan Feuerriegel. 2019. Personalized purchase prediction of market baskets with Wasserstein-based sequence matching. In KDD. 2643\u20132652.","DOI":"10.1145\/3292500.3330791"},{"key":"e_1_3_2_1_53_1","unstructured":"Changhee Lee and Mihaela Van Der\u00a0Schaar. 2020. Temporal phenotyping using deep predictive clustering of disease progression. In ICML. 5767\u20135777."},{"key":"e_1_3_2_1_55_1","doi-asserted-by":"crossref","unstructured":"Xiangsheng Li Jiaxin Mao Weizhi Ma Yiqun Liu Min Zhang Shaoping Ma Zhaowei Wang and Xiuqiang He. 2021. Topic-Enhanced Knowledge-Aware Retrieval Model for Diverse Relevance Estimation. In WWW. 756\u2013767.","DOI":"10.1145\/3442381.3449943"},{"key":"e_1_3_2_1_56_1","volume-title":"Isolation-based anomaly detection. ACM Transactions on Knowledge Discovery from Data (TKDD) 6, 1","author":"Liu Fei\u00a0Tony","year":"2012","unstructured":"Fei\u00a0Tony Liu, Kai\u00a0Ming Ting, and Zhi-Hua Zhou. 2012. Isolation-based anomaly detection. ACM Transactions on Knowledge Discovery from Data (TKDD) 6, 1 (2012), 1\u201339."},{"key":"e_1_3_2_1_57_1","first-page":"2346","article-title":"Learning under concept drift: A review","volume":"31","author":"Lu Jie","year":"2018","unstructured":"Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and Guangquan Zhang. 2018. Learning under concept drift: A review. IEEE Transactions on Knowledge and Data Engineering 31, 12 (2018), 2346\u20132363.","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"key":"e_1_3_2_1_58_1","doi-asserted-by":"publisher","DOI":"10.1145\/3534678.3539271"},{"key":"e_1_3_2_1_59_1","volume-title":"Learning representations for time series clustering. Advances in neural information processing systems 32","author":"Ma Qianli","year":"2019","unstructured":"Qianli Ma, Jiawei Zheng, Sen Li, and Gary\u00a0W Cottrell. 2019. Learning representations for time series clustering. Advances in neural information processing systems 32 (2019), 3781\u20133791."},{"key":"e_1_3_2_1_60_1","doi-asserted-by":"publisher","DOI":"10.1002\/sam.11380"},{"key":"e_1_3_2_1_61_1","doi-asserted-by":"publisher","DOI":"10.1145\/3219819.3220107"},{"key":"e_1_3_2_1_62_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-06608-0_1"},{"key":"e_1_3_2_1_63_1","doi-asserted-by":"crossref","unstructured":"Yasuko Matsubara and Yasushi Sakurai. 2016. Regime Shifts in Streams: Real-time Forecasting of Co-evolving Time Sequences. In KDD. 1045\u20131054.","DOI":"10.1145\/2939672.2939755"},{"key":"e_1_3_2_1_64_1","doi-asserted-by":"crossref","unstructured":"Yasuko Matsubara and Yasushi Sakurai. 2019. Dynamic Modeling and Forecasting of Time-Evolving Data Streams. In KDD. 458\u2013468.","DOI":"10.1145\/3292500.3330947"},{"key":"e_1_3_2_1_65_1","doi-asserted-by":"crossref","unstructured":"Yasuko Matsubara Yasushi Sakurai and Christos Faloutsos. 2014. AutoPlait: Automatic Mining of Co-evolving Time Sequences. In SIGMOD.","DOI":"10.1145\/2588555.2588556"},{"key":"e_1_3_2_1_66_1","doi-asserted-by":"crossref","unstructured":"Yasuko Matsubara Yasushi Sakurai and Christos Faloutsos. 2015. The Web as a Jungle: Non-Linear Dynamical Systems for Co-evolving Online Activities. In WWW.","DOI":"10.1145\/2736277.2741092"},{"key":"e_1_3_2_1_67_1","doi-asserted-by":"crossref","unstructured":"Yasuko Matsubara Yasushi Sakurai and Christos Faloutsos. 2016. Non-Linear Mining of Competing Local Activities. In WWW.","DOI":"10.1145\/2872427.2883010"},{"key":"e_1_3_2_1_68_1","doi-asserted-by":"crossref","unstructured":"Yasuko Matsubara Yasushi Sakurai Christos Faloutsos Tomoharu Iwata and Masatoshi Yoshikawa. 2012. Fast mining and forecasting of complex time-stamped events. In KDD. 271\u2013279.","DOI":"10.1145\/2339530.2339577"},{"key":"e_1_3_2_1_69_1","doi-asserted-by":"crossref","unstructured":"Charalampos Mavroforakis Isabel Valera and Manuel Gomez-Rodriguez. 2017. Modeling the Dynamics of Learning Activity on the Web. In WWW. ACM 1421\u20131430.","DOI":"10.1145\/3038912.3052669"},{"key":"e_1_3_2_1_70_1","doi-asserted-by":"crossref","unstructured":"Yu Meng Yunyi Zhang Jiaxin Huang Yu Zhang Chao Zhang and Jiawei Han. 2020. Hierarchical Topic Mining via Joint Spherical Tree and Text Embedding. In KDD. 1908\u20131917.","DOI":"10.1145\/3394486.3403242"},{"key":"e_1_3_2_1_71_1","doi-asserted-by":"crossref","unstructured":"Maya Okawa Tomoharu Iwata Takeshi Kurashima Yusuke Tanaka Hiroyuki Toda and Naonori Ueda. 2019. Deep Mixture Point Processes: Spatio-temporal Event Prediction with Rich Contextual Information. In KDD. 373\u2013383.","DOI":"10.1145\/3292500.3330937"},{"key":"e_1_3_2_1_72_1","volume-title":"Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12","author":"Pedregosa Fabian","year":"2011","unstructured":"Fabian Pedregosa, Ga\u00ebl Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12 (2011), 2825\u20132830."},{"key":"e_1_3_2_1_73_1","doi-asserted-by":"crossref","unstructured":"Ian Porteous David Newman Alexander Ihler Arthur Asuncion Padhraic Smyth and Max Welling. 2008. Fast collapsed gibbs sampling for latent dirichlet allocation. In KDD. 569\u2013577.","DOI":"10.1145\/1401890.1401960"},{"key":"e_1_3_2_1_74_1","doi-asserted-by":"publisher","DOI":"10.1145\/2339530.2339576"},{"key":"e_1_3_2_1_75_1","doi-asserted-by":"crossref","unstructured":"Yasushi Sakurai Yasuko Matsubara and Christos Faloutsos. 2016. Mining Big Time-series Data on the Web. In WWW. 1029\u20131032.","DOI":"10.1145\/2872518.2891061"},{"key":"e_1_3_2_1_76_1","doi-asserted-by":"crossref","unstructured":"Aaron Schein John Paisley David\u00a0M Blei and Hanna Wallach. 2015. Bayesian poisson tensor factorization for inferring multilateral relations from sparse dyadic event counts. In KDD. 1045\u20131054.","DOI":"10.1145\/2783258.2783414"},{"key":"e_1_3_2_1_77_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.procs.2020.07.080"},{"key":"e_1_3_2_1_78_1","doi-asserted-by":"crossref","unstructured":"Neil Shah Danai Koutra Tianmin Zou Brian Gallagher and Christos Faloutsos. 2015. TimeCrunch: Interpretable Dynamic Graph Summarization. In KDD.","DOI":"10.1145\/2783258.2783321"},{"key":"e_1_3_2_1_79_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10115-014-0733-3"},{"key":"e_1_3_2_1_80_1","doi-asserted-by":"publisher","DOI":"10.1145\/3097983.3098087"},{"key":"e_1_3_2_1_81_1","doi-asserted-by":"publisher","DOI":"10.1137\/1.9781611972818.69"},{"key":"e_1_3_2_1_82_1","doi-asserted-by":"publisher","DOI":"10.1145\/3038912.3052595"},{"key":"e_1_3_2_1_83_1","doi-asserted-by":"crossref","unstructured":"Veronica Tozzo Federico Ciech Davide Garbarino and Alessandro Verri. 2021. Statistical Models Coupling Allows for Complex Local Multivariate Time Series Analysis. In KDD. 1593\u20131603.","DOI":"10.1145\/3447548.3467362"},{"key":"e_1_3_2_1_84_1","doi-asserted-by":"publisher","DOI":"10.1145\/2783258.2783395"},{"key":"e_1_3_2_1_85_1","doi-asserted-by":"crossref","unstructured":"Yue Wang Jing Li Hou\u00a0Pong Chan Irwin King Michael\u00a0R. Lyu and Shuming Shi. 2019. Topic-Aware Neural Keyphrase Generation for Social Media Language. In ACL. 2516\u20132526.","DOI":"10.18653\/v1\/P19-1240"},{"key":"e_1_3_2_1_86_1","doi-asserted-by":"crossref","unstructured":"Yuan Xue Denny Zhou Nan Du Andrew\u00a0M. Dai Zhen Xu Kun Zhang and Claire Cui. 2020. Deep State-Space Generative Model For Correlated Time-to-Event Predictions. In KDD. ACM 1552\u20131562.","DOI":"10.1145\/3394486.3403206"},{"key":"e_1_3_2_1_87_1","doi-asserted-by":"crossref","unstructured":"Jaewon Yang Julian McAuley Jure Leskovec Paea LePendu and Nigam Shah. 2014. Finding progression stages in time-evolving event sequences. In WWW. 783\u2013794.","DOI":"10.1145\/2566486.2568044"},{"key":"e_1_3_2_1_88_1","unstructured":"Shuochao Yao Shaohan Hu Yiran Zhao Aston Zhang and Tarek\u00a0F. Abdelzaher. 2017. DeepSense: A Unified Deep Learning Framework for Time-Series Mobile Sensing Data Processing. In WWW. ACM 351\u2013360."},{"key":"e_1_3_2_1_89_1","doi-asserted-by":"publisher","DOI":"10.1145\/3219819.3220094"}],"event":{"name":"WWW '23: The ACM Web Conference 2023","sponsor":["SIGWEB ACM Special Interest Group on Hypertext, Hypermedia, and Web"],"location":"Austin TX USA","acronym":"WWW '23"},"container-title":["Proceedings of the ACM Web Conference 2023"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3543507.3583370","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,19]],"date-time":"2024-10-19T08:05:21Z","timestamp":1729325121000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3543507.3583370"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,4,30]]},"references-count":88,"alternative-id":["10.1145\/3543507.3583370","10.1145\/3543507"],"URL":"https:\/\/doi.org\/10.1145\/3543507.3583370","relation":{},"subject":[],"published":{"date-parts":[[2023,4,30]]},"assertion":[{"value":"2023-04-30","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}