{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T17:49:56Z","timestamp":1725990596276},"publisher-location":"New York, NY, USA","reference-count":46,"publisher":"ACM","funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61972270"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2023,4,30]]},"DOI":"10.1145\/3543507.3583286","type":"proceedings-article","created":{"date-parts":[[2023,4,26]],"date-time":"2023-04-26T23:30:51Z","timestamp":1682551851000},"update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":13,"title":["Contrastive Collaborative Filtering for Cold-Start Item Recommendation"],"prefix":"10.1145","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3040-567X","authenticated-orcid":false,"given":"Zhihui","family":"Zhou","sequence":"first","affiliation":[{"name":"Sichuan University, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5374-5693","authenticated-orcid":false,"given":"Lilin","family":"Zhang","sequence":"additional","affiliation":[{"name":"Sichuan University, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2265-3155","authenticated-orcid":false,"given":"Ning","family":"Yang","sequence":"additional","affiliation":[{"name":"Sichuan University, China"}]}],"member":"320","published-online":{"date-parts":[[2023,4,30]]},"reference":[{"key":"e_1_3_2_1_1_1","unstructured":"[1] Alexander\u00a0A Alemi Ian Fischer Joshua\u00a0V Dillon and Kevin Murphy. 2017. Deep variational information bottleneck. In ICLR."},{"key":"e_1_3_2_1_2_1","doi-asserted-by":"crossref","unstructured":"[2] Oren Barkan Noam Koenigstein Eylon Yogev and Ori Katz. 2019. CB2CF: A Neural Multiview Content-to-Collaborative Filtering Model for Completely Cold Item Recommendations. In RecSys.","DOI":"10.1145\/3298689.3347038"},{"key":"e_1_3_2_1_3_1","doi-asserted-by":"crossref","unstructured":"[3] Hao Chen Zefan Wang Feiran Huang Xiao Huang Yue Xu Yishi Lin Peng He and Zhoujun Li. 2022. Generative Adversarial Framework for Cold-Start Item Recommendation. In SIGIR.","DOI":"10.1145\/3477495.3531897"},{"key":"e_1_3_2_1_4_1","unstructured":"[4] Ting Chen Simon Kornblith Mohammad Norouzi and Geoffrey Hinton. 2020. A simple framework for contrastive learning of visual representations. In ICML."},{"key":"e_1_3_2_1_5_1","doi-asserted-by":"crossref","unstructured":"[5] Yongjun Chen Zhiwei Liu Jia Li Julian McAuley and Caiming Xiong. 2022. Intent Contrastive Learning for Sequential Recommendation. In WWW.","DOI":"10.1145\/3485447.3512090"},{"key":"e_1_3_2_1_6_1","unstructured":"[6] Xiaoyu Du Xiang Wang Xiangnan He Zechao Li Jinhui Tang and Tat-Seng Chua. 2020. How to learn item representation for cold-start multimedia recommendation\u00bf. In MM."},{"key":"e_1_3_2_1_7_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10791-017-9295-9"},{"key":"e_1_3_2_1_8_1","doi-asserted-by":"crossref","unstructured":"[8] Zeno Gantner Lucas Drumond Christoph Freudenthaler Steffen Rendle and Lars Schmidt-Thieme. 2010. Learning attribute-to-feature mappings for cold-start recommendations. In ICDM.","DOI":"10.1109\/ICDM.2010.129"},{"key":"e_1_3_2_1_9_1","unstructured":"[9] J Goodfellow\u00a0Ian Pouget-Abadie Jean Mirza Mehdi Xu Bing Warde-Farley David Ozair Sherjil and C Courville\u00a0Aaron. 2014. Generative adversarial nets. In NeurIPS."},{"key":"e_1_3_2_1_10_1","unstructured":"[10] Xiangnan He and Tat-Seng Chua. 2017. Neural factorization machines for sparse predictive analytics. In SIGIR."},{"key":"e_1_3_2_1_11_1","unstructured":"[11] Xiangnan He Lizi Liao Hanwang Zhang Liqiang Nie Xia Hu and Tat-Seng Chua. 2017. Neural collaborative filtering. In WWW."},{"key":"e_1_3_2_1_12_1","unstructured":"[12] Olivier Henaff. 2020. Data-efficient image recognition with contrastive predictive coding. In ICML."},{"key":"e_1_3_2_1_13_1","unstructured":"[13] Prannay Khosla Piotr Teterwak Chen Wang Aaron Sarna Yonglong Tian Phillip Isola Aaron Maschinot Ce Liu and Dilip Krishnan. 2020. Supervised contrastive learning. In NeurIPS."},{"key":"e_1_3_2_1_14_1","volume-title":"Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980","author":"Kingma P","year":"2014","unstructured":"[14] Diederik\u00a0P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)."},{"key":"e_1_3_2_1_15_1","doi-asserted-by":"publisher","DOI":"10.1145\/3292500.3330859"},{"key":"e_1_3_2_1_16_1","unstructured":"[16] Jingjing Li Mengmeng Jing Ke Lu Lei Zhu Yang Yang and Zi Huang. 2019. From Zero-Shot Learning to Cold-Start Recommendation. In AAAI."},{"key":"e_1_3_2_1_17_1","unstructured":"[17] Yuanfu Lu Yuan Fang and Chuan Shi. 2020. Meta-learning on heterogeneous information networks for cold-start recommendation. In KDD."},{"key":"e_1_3_2_1_18_1","unstructured":"[18] Jianxin Ma Chang Zhou Hongxia Yang Peng Cui Xin Wang and Wenwu Zhu. 2020. Disentangled self-supervision in sequential recommenders. In KDD."},{"key":"e_1_3_2_1_19_1","unstructured":"[19] Kaixiang Mo Bo Liu Lei Xiao Yong Li and Jie Jiang. 2015. Image feature learning for cold start problem in display advertising. In IJCAI."},{"key":"e_1_3_2_1_20_1","volume-title":"Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748","author":"van\u00a0den Oord Aaron","year":"2018","unstructured":"[20] Aaron van\u00a0den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)."},{"key":"e_1_3_2_1_21_1","unstructured":"[21] Feiyang Pan Shuokai Li Xiang Ao Pingzhong Tang and Qing He. 2019. Warm Up Cold-Start Advertisements: Improving CTR Predictions via Learning to Learn ID Embeddings. In SIGIR."},{"key":"e_1_3_2_1_22_1","unstructured":"[22] Ruihong Qiu Zi Huang and Hongzhi Yin. 2021. Memory Augmented Multi-Instance Contrastive Predictive Coding for Sequential Recommendation. In ICDM."},{"key":"e_1_3_2_1_23_1","volume-title":"BPR: Bayesian personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618","author":"Rendle Steffen","year":"2009","unstructured":"[23] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. 2009. BPR: Bayesian personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618 (2009)."},{"key":"e_1_3_2_1_24_1","doi-asserted-by":"crossref","unstructured":"[24] Martin Saveski and Amin Mantrach. 2014. Item cold-start recommendations: learning local collective embeddings. In RecSys.","DOI":"10.1145\/2645710.2645751"},{"key":"e_1_3_2_1_25_1","doi-asserted-by":"crossref","unstructured":"[25] Andrew\u00a0I Schein Alexandrin Popescul Lyle\u00a0H Ungar and David\u00a0M Pennock. 2002. Methods and metrics for cold-start recommendations. In SIGIR.","DOI":"10.1145\/564376.564421"},{"key":"e_1_3_2_1_26_1","volume-title":"Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556","author":"Simonyan Karen","year":"2014","unstructured":"[26] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)."},{"key":"e_1_3_2_1_27_1","doi-asserted-by":"publisher","DOI":"10.1145\/3336191.3371805"},{"key":"e_1_3_2_1_28_1","volume-title":"Elements of information theory","author":"Thomas MTCAJ","unstructured":"[28] MTCAJ Thomas and A\u00a0Thomas Joy. 2006. Elements of information theory. Wiley-Interscience."},{"key":"e_1_3_2_1_29_1","volume-title":"The information bottleneck method. arXiv preprint physics\/0004057","author":"Tishby Naftali","year":"2000","unstructured":"[29] Naftali Tishby, Fernando\u00a0C Pereira, and William Bialek. 2000. The information bottleneck method. arXiv preprint physics\/0004057 (2000)."},{"key":"e_1_3_2_1_30_1","doi-asserted-by":"publisher","DOI":"10.1109\/ITW.2015.7133169"},{"key":"e_1_3_2_1_31_1","volume-title":"Visualizing data using t-SNE.Journal of machine learning research","author":"Maaten Laurens Van\u00a0der","year":"2008","unstructured":"[31] Laurens Van\u00a0der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.Journal of machine learning research (2008)."},{"key":"e_1_3_2_1_32_1","volume-title":"Dropoutnet: Addressing cold start in recommender systems. In NeurIPS.","author":"Volkovs Maksims","year":"2017","unstructured":"[32] Maksims Volkovs, Guangwei Yu, and Tomi Poutanen. 2017. Dropoutnet: Addressing cold start in recommender systems. In NeurIPS."},{"key":"e_1_3_2_1_33_1","doi-asserted-by":"crossref","unstructured":"[33] Yinwei Wei Xiang Wang Qi Li Liqiang Nie Yan Li Xuanping Li and Tat-Seng Chua. 2021. Contrastive learning for cold-start recommendation. In MM.","DOI":"10.1145\/3474085.3475665"},{"key":"e_1_3_2_1_34_1","unstructured":"[34] Jiancan Wu Xiang Wang Fuli Feng Xiangnan He Liang Chen Jianxun Lian and Xing Xie. 2021. Self-supervised graph learning for recommendation. In SIGIR."},{"key":"e_1_3_2_1_35_1","doi-asserted-by":"crossref","unstructured":"[35] Xin Xia Hongzhi Yin Junliang Yu Qinyong Wang Lizhen Cui and Xiangliang Zhang. 2021. Self-supervised hypergraph convolutional networks for session-based recommendation. In AAAI.","DOI":"10.1609\/aaai.v35i5.16578"},{"key":"e_1_3_2_1_36_1","doi-asserted-by":"crossref","unstructured":"[36] Xu Xie Fei Sun Zhaoyang Liu Shiwen Wu Jinyang Gao Jiandong Zhang Bolin Ding and Bin Cui. 2022. Contrastive learning for sequential recommendation. In ICDE.","DOI":"10.1109\/ICDE53745.2022.00099"},{"key":"e_1_3_2_1_37_1","unstructured":"[37] Yuanmeng Yan Rumei Li Sirui Wang Fuzheng Zhang Wei Wu and Weiran Xu. 2021. ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer. In ACL."},{"key":"e_1_3_2_1_38_1","unstructured":"[38] Junliang Yu Hongzhi Yin Min Gao Xin Xia Xiangliang Zhang and Nguyen\u00a0Quoc Viet\u00a0Hung. 2021. Socially-aware self-supervised tri-training for recommendation. In KDD."},{"key":"e_1_3_2_1_39_1","volume-title":"Nguyen Quoc\u00a0Viet Hung, and Xiangliang Zhang","author":"Yu Junliang","year":"2021","unstructured":"[39] Junliang Yu, Hongzhi Yin, Jundong Li, Qinyong Wang, Nguyen Quoc\u00a0Viet Hung, and Xiangliang Zhang. 2021. Self-supervised multi-channel hypergraph convolutional network for social recommendation. In WWW."},{"key":"e_1_3_2_1_40_1","unstructured":"[40] Junliang Yu Hongzhi Yin Xin Xia Tong Chen Lizhen Cui and Quoc Viet\u00a0Hung Nguyen. 2022. Are Graph Augmentations Necessary\u00bf Simple Graph Contrastive Learning for Recommendation. In SIGIR."},{"key":"e_1_3_2_1_41_1","volume-title":"Self-Supervised Learning for Recommender Systems: A Survey. arXiv preprint arXiv:2203.15876","author":"Yu Junliang","year":"2022","unstructured":"[41] Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Jundong Li, and Zi Huang. 2022. Self-Supervised Learning for Recommender Systems: A Survey. arXiv preprint arXiv:2203.15876 (2022)."},{"key":"e_1_3_2_1_42_1","doi-asserted-by":"crossref","unstructured":"[42] Junwei Zhang Min Gao Junliang Yu Lei Guo Jundong Li and Hongzhi Yin. 2021. Double-scale self-supervised hypergraph learning for group recommendation. In CIKM.","DOI":"10.1145\/3459637.3482426"},{"key":"e_1_3_2_1_43_1","doi-asserted-by":"crossref","unstructured":"[43] Xu Zhao Yi Ren Ying Du Shenzheng Zhang and Nian Wang. 2022. Improving Item Cold-start Recommendation via Model-agnostic Conditional Variational Autoencoder. In SIGIR.","DOI":"10.1145\/3477495.3531902"},{"key":"e_1_3_2_1_44_1","doi-asserted-by":"crossref","unstructured":"[44] Jiawei Zheng Qianli Ma Hao Gu and Zhenjing Zheng. 2021. Multi-view Denoising Graph Auto-Encoders on Heterogeneous Information Networks for Cold-start Recommendation. In KDD.","DOI":"10.1145\/3447548.3467427"},{"key":"e_1_3_2_1_45_1","doi-asserted-by":"crossref","unstructured":"[45] Kun Zhou Hui Wang Wayne\u00a0Xin Zhao Yutao Zhu Sirui Wang Fuzheng Zhang Zhongyuan Wang and Ji-Rong Wen. 2020. S3-rec: Self-supervised learning for sequential recommendation with mutual information maximization. In CIKM.","DOI":"10.1145\/3340531.3411954"},{"key":"e_1_3_2_1_46_1","unstructured":"[46] Yongchun Zhu Ruobing Xie Fuzhen Zhuang Kaikai Ge Ying Sun Xu Zhang Leyu Lin and Juan Cao. 2021. Learning to Warm Up Cold Item Embeddings for Cold-Start Recommendation with Meta Scaling and Shifting Networks. In SIGIR."}],"event":{"name":"WWW '23: The ACM Web Conference 2023","location":"Austin TX USA","acronym":"WWW '23","sponsor":["SIGWEB ACM Special Interest Group on Hypertext, Hypermedia, and Web"]},"container-title":["Proceedings of the ACM Web Conference 2023"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3543507.3583286","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,2,29]],"date-time":"2024-02-29T19:28:58Z","timestamp":1709234938000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3543507.3583286"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,4,30]]},"references-count":46,"alternative-id":["10.1145\/3543507.3583286","10.1145\/3543507"],"URL":"https:\/\/doi.org\/10.1145\/3543507.3583286","relation":{},"subject":[],"published":{"date-parts":[[2023,4,30]]},"assertion":[{"value":"2023-04-30","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}