{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,7]],"date-time":"2024-09-07T14:19:01Z","timestamp":1725718741128},"publisher-location":"New York, NY, USA","reference-count":19,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2022,7,9]]},"DOI":"10.1145\/3520304.3528966","type":"proceedings-article","created":{"date-parts":[[2022,7,19]],"date-time":"2022-07-19T11:29:44Z","timestamp":1658230184000},"page":"268-271","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":2,"title":["KDE-GAN"],"prefix":"10.1145","author":[{"given":"Zheping","family":"Liu","sequence":"first","affiliation":[{"name":"RMIT University, Melbourne, VIC, Australia"}]},{"given":"Andy","family":"Song","sequence":"additional","affiliation":[{"name":"RMIT University, Melbourne, VIC, Australia"}]},{"given":"Nasser","family":"Sabar","sequence":"additional","affiliation":[{"name":"La Trobe University, Melbourne, VIC, Australia"}]}],"member":"320","published-online":{"date-parts":[[2022,7,19]]},"reference":[{"key":"e_1_3_2_1_1_1","volume-title":"Compressing gans using knowledge distillation. arXiv preprint arXiv:1902.00159","author":"Aguinaldo Angeline","year":"2019","unstructured":"Angeline Aguinaldo , Ping-Yeh Chiang , Alex Gain , Ameya Paul , Kolten Pearson , and Soheil Feizi . 2019. Compressing gans using knowledge distillation. arXiv preprint arXiv:1902.00159 ( 2019 ). Angeline Aguinaldo, Ping-Yeh Chiang, Alex Gain, Ameya Paul, Kolten Pearson, and Soheil Feizi. 2019. Compressing gans using knowledge distillation. arXiv preprint arXiv:1902.00159 (2019)."},{"key":"e_1_3_2_1_2_1","volume-title":"TOWARDS PRINCIPLED METHODS FOR TRAINING GENERATIVE ADVERSARIAL NETWORKS. stat 1050","author":"Arjovsky Martin","year":"2017","unstructured":"Martin Arjovsky and L\u00e9on Bottou . 2017. TOWARDS PRINCIPLED METHODS FOR TRAINING GENERATIVE ADVERSARIAL NETWORKS. stat 1050 ( 2017 ), 17. Martin Arjovsky and L\u00e9on Bottou. 2017. TOWARDS PRINCIPLED METHODS FOR TRAINING GENERATIVE ADVERSARIAL NETWORKS. stat 1050 (2017), 17."},{"key":"e_1_3_2_1_3_1","volume-title":"Do GANs actually learn the distribution? An empirical study. ArXiv abs\/1706.08224","author":"Arora S.","year":"2017","unstructured":"S. Arora and Yi Zhang . 2017. Do GANs actually learn the distribution? An empirical study. ArXiv abs\/1706.08224 ( 2017 ). S. Arora and Yi Zhang. 2017. Do GANs actually learn the distribution? An empirical study. ArXiv abs\/1706.08224 (2017)."},{"key":"e_1_3_2_1_4_1","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v34i04.5765"},{"key":"e_1_3_2_1_5_1","doi-asserted-by":"publisher","DOI":"10.1109\/TEVC.2021.3068842"},{"key":"e_1_3_2_1_6_1","volume-title":"Generative adversarial nets. Advances in neural information processing systems 27","author":"Goodfellow Ian","year":"2014","unstructured":"Ian Goodfellow , Jean Pouget-Abadie , Mehdi Mirza , Bing Xu , David Warde-Farley , Sherjil Ozair , Aaron Courville , and Yoshua Bengio . 2014. Generative adversarial nets. Advances in neural information processing systems 27 ( 2014 ). Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. Advances in neural information processing systems 27 (2014)."},{"key":"e_1_3_2_1_7_1","volume-title":"Distilling the Knowledge in a Neural Network. stat 1050","author":"Hinton Geoffrey","year":"2015","unstructured":"Geoffrey Hinton , Oriol Vinyals , and Jeff Dean . 2015. Distilling the Knowledge in a Neural Network. stat 1050 ( 2015 ), 9. Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the Knowledge in a Neural Network. stat 1050 (2015), 9."},{"key":"e_1_3_2_1_8_1","unstructured":"Alex Krizhevsky Geoffrey Hinton etal 2009. Learning multiple layers of features from tiny images. (2009). Alex Krizhevsky Geoffrey Hinton et al. 2009. Learning multiple layers of features from tiny images. (2009)."},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN52387.2021.9533612"},{"key":"e_1_3_2_1_10_1","volume-title":"Freeze the discriminator: A simple baseline for fine-tuning gans. arXiv","author":"Mo Sangwoo","year":"2020","unstructured":"Sangwoo Mo , Minsu Cho , and Jinwoo Shin . 2020. Freeze the discriminator: A simple baseline for fine-tuning gans. arXiv 2020 . arXiv preprint arXiv:2002.10964 (2020). Sangwoo Mo, Minsu Cho, and Jinwoo Shin. 2020. Freeze the discriminator: A simple baseline for fine-tuning gans. arXiv 2020. arXiv preprint arXiv:2002.10964 (2020)."},{"key":"e_1_3_2_1_11_1","volume-title":"Towards Distributed Coevolutionary GANs. ArXiv abs\/1807.08194","author":"Schmiedlechner Tom","year":"2018","unstructured":"Tom Schmiedlechner , Abdullah Al-Dujaili , E. Hemberg , and U. O'Reilly . 2018. Towards Distributed Coevolutionary GANs. ArXiv abs\/1807.08194 ( 2018 ). Tom Schmiedlechner, Abdullah Al-Dujaili, E. Hemberg, and U. O'Reilly. 2018. Towards Distributed Coevolutionary GANs. ArXiv abs\/1807.08194 (2018)."},{"key":"e_1_3_2_1_12_1","volume-title":"Abdullah Al-Dujaili, E. Hemberg, and U. O'Reilly.","author":"Schmiedlechner Tom","year":"2018","unstructured":"Tom Schmiedlechner , Ignavier Ng Zhi Yong , Abdullah Al-Dujaili, E. Hemberg, and U. O'Reilly. 2018 . Lipizzaner : A System That Scales Robust Generative Adversarial Network Training. ArXiv abs\/1811.12843 (2018). Tom Schmiedlechner, Ignavier Ng Zhi Yong, Abdullah Al-Dujaili, E. Hemberg, and U. O'Reilly. 2018. Lipizzaner: A System That Scales Robust Generative Adversarial Network Training. ArXiv abs\/1811.12843 (2018)."},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"crossref","unstructured":"Lisa Torrey and Jude Shavlik. 2010. Transfer learning. In Handbook of research on machine learning applications and trends: algorithms methods and techniques. IGI global 242--264. Lisa Torrey and Jude Shavlik. 2010. Transfer learning. In Handbook of research on machine learning applications and trends: algorithms methods and techniques. IGI global 242--264.","DOI":"10.4018\/978-1-60566-766-9.ch011"},{"key":"e_1_3_2_1_14_1","doi-asserted-by":"publisher","DOI":"10.1145\/3321707.3321860"},{"volume-title":"Deep Neural Evolution","author":"Toutouh Jamal","key":"e_1_3_2_1_15_1","unstructured":"Jamal Toutouh , Erik Hemberg , and Una-May O'Reilly . 2020. Data dieting in gan training . In Deep Neural Evolution . Springer , 379--400. Jamal Toutouh, Erik Hemberg, and Una-May O'Reilly. 2020. Data dieting in gan training. In Deep Neural Evolution. Springer, 379--400."},{"key":"e_1_3_2_1_16_1","doi-asserted-by":"publisher","DOI":"10.1109\/TEVC.2019.2895748"},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"crossref","unstructured":"Yaxing Wang Chenshen Wu L. Herranz Joost van de Weijer Abel Gonzalez-Garcia and B. Raducanu. 2018. Transferring GANs: generating images from limited data. In ECCV. Yaxing Wang Chenshen Wu L. Herranz Joost van de Weijer Abel Gonzalez-Garcia and B. Raducanu. 2018. Transferring GANs: generating images from limited data. In ECCV.","DOI":"10.1007\/978-3-030-01231-1_14"},{"key":"e_1_3_2_1_18_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.754"},{"key":"e_1_3_2_1_19_1","volume-title":"Lsun: Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365","author":"Yu Fisher","year":"2015","unstructured":"Fisher Yu , Ari Seff , Yinda Zhang , Shuran Song , Thomas Funkhouser , and Jianxiong Xiao . 2015 . Lsun: Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365 (2015). Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. 2015. Lsun: Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365 (2015)."}],"event":{"name":"GECCO '22: Genetic and Evolutionary Computation Conference","sponsor":["SIGEVO ACM Special Interest Group on Genetic and Evolutionary Computation"],"location":"Boston Massachusetts","acronym":"GECCO '22"},"container-title":["Proceedings of the Genetic and Evolutionary Computation Conference Companion"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3520304.3528966","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,7,9]],"date-time":"2023-07-09T07:31:40Z","timestamp":1688887900000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3520304.3528966"}},"subtitle":["enhancing evolutionary GAN with knowledge distillation and transfer learning"],"short-title":[],"issued":{"date-parts":[[2022,7,9]]},"references-count":19,"alternative-id":["10.1145\/3520304.3528966","10.1145\/3520304"],"URL":"https:\/\/doi.org\/10.1145\/3520304.3528966","relation":{},"subject":[],"published":{"date-parts":[[2022,7,9]]},"assertion":[{"value":"2022-07-19","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}