{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T16:53:27Z","timestamp":1726851207675},"publisher-location":"New York, NY, USA","reference-count":54,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2022,4,5]]},"DOI":"10.1145\/3517207.3526969","type":"proceedings-article","created":{"date-parts":[[2022,3,29]],"date-time":"2022-03-29T22:09:26Z","timestamp":1648591766000},"update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":15,"title":["Empirical analysis of federated learning in heterogeneous environments"],"prefix":"10.1145","author":[{"given":"Ahmed M.","family":"Abdelmoniem","sequence":"first","affiliation":[{"name":"Queen Mary University of London, United Kingdom"}]},{"given":"Chen-Yu","family":"Ho","sequence":"additional","affiliation":[{"name":"KAUST, Saudi Arabia"}]},{"given":"Pantelis","family":"Papageorgiou","sequence":"additional","affiliation":[{"name":"KAUST, Saudi Arabia"}]},{"given":"Marco","family":"Canini","sequence":"additional","affiliation":[{"name":"KAUST, Saudi Arabia"}]}],"member":"320","published-online":{"date-parts":[[2022,4,5]]},"reference":[{"key":"e_1_3_2_1_1_1","doi-asserted-by":"crossref","unstructured":"Martin Abadi Andy Chu Ian Goodfellow H. Brendan McMahan Ilya Mironov Kunal Talwar and Li Zhang. 2016. Deep Learning with Differential Privacy. In CCS. Martin Abadi Andy Chu Ian Goodfellow H. Brendan McMahan Ilya Mironov Kunal Talwar and Li Zhang. 2016. Deep Learning with Differential Privacy. In CCS.","DOI":"10.1145\/2976749.2978318"},{"key":"e_1_3_2_1_2_1","volume-title":"Abdelmoniem and Marco Canini","author":"Ahmed","year":"2021","unstructured":"Ahmed M. Abdelmoniem and Marco Canini . 2021 . DC2: Delay-aware Compression Control for Distributed Machine Learning. In INFOCOM. Ahmed M. Abdelmoniem and Marco Canini. 2021. DC2: Delay-aware Compression Control for Distributed Machine Learning. In INFOCOM."},{"key":"e_1_3_2_1_3_1","volume-title":"Abdelmoniem and Marco Canini","author":"Ahmed","year":"2021","unstructured":"Ahmed M. Abdelmoniem and Marco Canini . 2021 . Towards Mitigating Device Heterogeneity in Federated Learning via Adaptive Model Quantization. In EuroMLSys . Ahmed M. Abdelmoniem and Marco Canini. 2021. Towards Mitigating Device Heterogeneity in Federated Learning via Adaptive Model Quantization. In EuroMLSys."},{"key":"e_1_3_2_1_4_1","unstructured":"Ahmed M. Abdelmoniem Ahmed Elzanaty Mohamed-Slim Alouini and Marco Canini. 2021. An Efficient Statistical-based Gradient Compression Technique for Distributed Training Systems. In MLSys. Ahmed M. Abdelmoniem Ahmed Elzanaty Mohamed-Slim Alouini and Marco Canini. 2021. An Efficient Statistical-based Gradient Compression Technique for Distributed Training Systems. In MLSys."},{"key":"e_1_3_2_1_5_1","volume-title":"Marco Canini, and Suhaib A. Fahmy.","author":"Abdelmoniem Ahmed M.","year":"2021","unstructured":"Ahmed M. Abdelmoniem , Atal Narayan Sahu , Marco Canini, and Suhaib A. Fahmy. 2021 . Resource-Efficient Federated Learning . arXiv 2111.01108 (2021). Ahmed M. Abdelmoniem, Atal Narayan Sahu, Marco Canini, and Suhaib A. Fahmy. 2021. Resource-Efficient Federated Learning. arXiv 2111.01108 (2021)."},{"key":"e_1_3_2_1_6_1","unstructured":"Eugene Bagdasaryan Andreas Veit Yiqing Hua Deborah Estrin and Vitaly Shmatikov. 2020. How To Backdoor Federated Learning. In AISTATS. Eugene Bagdasaryan Andreas Veit Yiqing Hua Deborah Estrin and Vitaly Shmatikov. 2020. How To Backdoor Federated Learning. In AISTATS."},{"key":"e_1_3_2_1_7_1","volume-title":"David Petrou, Daniel Ramage, and Jason Roselander.","author":"Bonawitz Keith","year":"2019","unstructured":"Keith Bonawitz , Hubert Eichner , Wolfgang Grieskamp , Dzmitry Huba , Alex Ingerman , Vladimir Ivanov , Chloe Kiddon , Jakub Kone\u010dn\u00fd , Stefano Mazzocchi , H. Brendan McMahan , Timon Van Overveldt , David Petrou, Daniel Ramage, and Jason Roselander. 2019 . Towards Federated Learning at Scale : System Design. In MLSys . Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Kone\u010dn\u00fd, Stefano Mazzocchi, H. Brendan McMahan, Timon Van Overveldt, David Petrou, Daniel Ramage, and Jason Roselander. 2019. Towards Federated Learning at Scale: System Design. In MLSys."},{"key":"e_1_3_2_1_8_1","doi-asserted-by":"crossref","unstructured":"Keith Bonawitz Vladimir Ivanov Ben Kreuter Antonio Marcedone H. Brendan McMahan Sarvar Patel Daniel Ramage Aaron Segal and Karn Seth. 2017. Practical Secure Aggregation for Privacy-Preserving Machine Learning. In CCS. Keith Bonawitz Vladimir Ivanov Ben Kreuter Antonio Marcedone H. Brendan McMahan Sarvar Patel Daniel Ramage Aaron Segal and Karn Seth. 2017. Practical Secure Aggregation for Privacy-Preserving Machine Learning. In CCS.","DOI":"10.1145\/3133956.3133982"},{"key":"e_1_3_2_1_9_1","volume-title":"Peter Wu, Tian Li, Jakub Kone\u010dn\u00fd, H. Brendan McMahan, Virginia Smith, and Ameet Talwalkar.","author":"Caldas Sebastian","year":"2018","unstructured":"Sebastian Caldas , Sai Meher Karthik Duddu , Peter Wu, Tian Li, Jakub Kone\u010dn\u00fd, H. Brendan McMahan, Virginia Smith, and Ameet Talwalkar. 2018 . LEAF : A Benchmark for Federated Settings . arXiv 1812.01097 (2018). Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Kone\u010dn\u00fd, H. Brendan McMahan, Virginia Smith, and Ameet Talwalkar. 2018. LEAF: A Benchmark for Federated Settings. arXiv 1812.01097 (2018)."},{"key":"e_1_3_2_1_10_1","doi-asserted-by":"crossref","unstructured":"Chia-Yu Chen Jungwook Choi Daniel Brand Ankur Agrawal Wei Zhang and Kailash Gopalakrishnan. 2018. AdaComp : Adaptive Residual Gradient Compression for Data-Parallel Distributed Training. In AAAI. Chia-Yu Chen Jungwook Choi Daniel Brand Ankur Agrawal Wei Zhang and Kailash Gopalakrishnan. 2018. AdaComp : Adaptive Residual Gradient Compression for Data-Parallel Distributed Training. In AAAI.","DOI":"10.1609\/aaai.v32i1.11728"},{"key":"e_1_3_2_1_11_1","volume-title":"Revisiting Distributed Synchronous SGD. In ICLR Workshop Track.","author":"Chen Jianmin","year":"2016","unstructured":"Jianmin Chen , Rajat Monga , Samy Bengio , and Rafal Jozefowicz . 2016 . Revisiting Distributed Synchronous SGD. In ICLR Workshop Track. Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. 2016. Revisiting Distributed Synchronous SGD. In ICLR Workshop Track."},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2019.2953131"},{"key":"e_1_3_2_1_13_1","volume-title":"EMNIST: Extending MNIST to handwritten letters. In IJCNN.","author":"Cohen Gregory","year":"2017","unstructured":"Gregory Cohen , Saeed Afshar , Jonathan Tapson , and Andr\u00e9 van Schaik . 2017 . EMNIST: Extending MNIST to handwritten letters. In IJCNN. Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andr\u00e9 van Schaik. 2017. EMNIST: Extending MNIST to handwritten letters. In IJCNN."},{"key":"e_1_3_2_1_14_1","volume-title":"The Design of Experiments (9 ed.)","author":"Fisher Ronald","unstructured":"Ronald Fisher . 1971. The Design of Experiments (9 ed.) . Macmillan . Ronald Fisher. 1971. The Design of Experiments (9 ed.). Macmillan."},{"key":"e_1_3_2_1_15_1","volume-title":"Huffman Coding Based Encoding Techniques for Fast Distributed Deep Learning. In Workshop on Distributed Machine Learning.","author":"Gajjala Rishikesh R.","year":"2020","unstructured":"Rishikesh R. Gajjala , Shashwat Banchhor , Ahmed M. Abdelmoniem , Aritra Dutta , Marco Canini , and Panos Kalnis . 2020 . Huffman Coding Based Encoding Techniques for Fast Distributed Deep Learning. In Workshop on Distributed Machine Learning. Rishikesh R. Gajjala, Shashwat Banchhor, Ahmed M. Abdelmoniem, Aritra Dutta, Marco Canini, and Panos Kalnis. 2020. Huffman Coding Based Encoding Techniques for Fast Distributed Deep Learning. In Workshop on Distributed Machine Learning."},{"key":"e_1_3_2_1_16_1","volume-title":"Federated Learning for Mobile Keyboard Prediction. arXiv:1811.03604","author":"Hard Andrew","year":"2018","unstructured":"Andrew Hard , Kanishka Rao , Rajiv Mathews , Swaroop Ramaswamy , Fran\u00e7oise Beaufays , Sean Augenstein , Hubert Eichner , Chlo\u00e9 Kiddon , and Daniel Ramage . 2018. Federated Learning for Mobile Keyboard Prediction. arXiv:1811.03604 ( 2018 ). Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Fran\u00e7oise Beaufays, Sean Augenstein, Hubert Eichner, Chlo\u00e9 Kiddon, and Daniel Ramage. 2018. Federated Learning for Mobile Keyboard Prediction. arXiv:1811.03604 (2018)."},{"key":"e_1_3_2_1_17_1","volume-title":"Seunghak Lee, Phillip B. Gibbons, Garth A. Gibson, Gregory R. Ganger, and Eric P. Xing.","author":"Ho Qirong","year":"2013","unstructured":"Qirong Ho , James Cipar , Henggang Cui , Jin Kyu Kim , Seunghak Lee, Phillip B. Gibbons, Garth A. Gibson, Gregory R. Ganger, and Eric P. Xing. 2013 . More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server. In NeurIPS. Qirong Ho, James Cipar, Henggang Cui, Jin Kyu Kim, Seunghak Lee, Phillip B. Gibbons, Garth A. Gibson, Gregory R. Ganger, and Eric P. Xing. 2013. More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server. In NeurIPS."},{"key":"e_1_3_2_1_18_1","unstructured":"Frank Hutter Holger Hoos and Kevin Leyton-Brown. 2014. An efficient approach for assessing hyperparameter importance. In ICML. Frank Hutter Holger Hoos and Kevin Leyton-Brown. 2014. An efficient approach for assessing hyperparameter importance. In ICML."},{"key":"e_1_3_2_1_19_1","volume-title":"Throughput fairness index: An explanation. ATM Forum contribution 99, 45","author":"Jain Raj","year":"1999","unstructured":"Raj Jain , Arjan Durresi , and Gojko Babic . 1999. Throughput fairness index: An explanation. ATM Forum contribution 99, 45 ( 1999 ). Raj Jain, Arjan Durresi, and Gojko Babic. 1999. Throughput fairness index: An explanation. ATM Forum contribution 99, 45 (1999)."},{"key":"e_1_3_2_1_20_1","doi-asserted-by":"crossref","unstructured":"Jiawei Jiang Bin Cui Ce Zhang and Lele Yu. 2017. Heterogeneity-Aware Distributed Parameter Servers. In SIGMOD. Jiawei Jiang Bin Cui Ce Zhang and Lele Yu. 2017. Heterogeneity-Aware Distributed Parameter Servers. In SIGMOD.","DOI":"10.1145\/3035918.3035933"},{"key":"e_1_3_2_1_21_1","volume-title":"Improving Federated Learning Personalization via Model Agnostic Meta Learning. arXiv","author":"Jiang Yihan","year":"1909","unstructured":"Yihan Jiang , Jakub Kone\u010dn\u00fd , Keith Rush , and Sreeram Kannan . 2019. Improving Federated Learning Personalization via Model Agnostic Meta Learning. arXiv 1909 .12488 (2019). Yihan Jiang, Jakub Kone\u010dn\u00fd, Keith Rush, and Sreeram Kannan. 2019. Improving Federated Learning Personalization via Model Agnostic Meta Learning. arXiv 1909.12488 (2019)."},{"key":"e_1_3_2_1_22_1","volume-title":"Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al.","author":"Kairouz Peter","year":"2019","unstructured":"Peter Kairouz , H Brendan McMahan , Brendan Avent , Aur\u00e9lien Bellet , Mehdi Bennis , Arjun Nitin Bhagoji , Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. 2019 . Advances and open problems in federated learning. arXiv:1912.04977 (2019). Peter Kairouz, H Brendan McMahan, Brendan Avent, Aur\u00e9lien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. 2019. Advances and open problems in federated learning. arXiv:1912.04977 (2019)."},{"key":"e_1_3_2_1_23_1","volume-title":"Federated Learning: Strategies for Improving Communication Efficiency. In Workshop on Private Multi-Party Machine Learning - NeurIPS.","author":"Kone\u010dn\u00fd Jakub","year":"2016","unstructured":"Jakub Kone\u010dn\u00fd , H. Brendan McMahan , Felix X. Yu , Peter Richtarik , Ananda Theertha Suresh , and Dave Bacon . 2016 . Federated Learning: Strategies for Improving Communication Efficiency. In Workshop on Private Multi-Party Machine Learning - NeurIPS. Jakub Kone\u010dn\u00fd, H. Brendan McMahan, Felix X. Yu, Peter Richtarik, Ananda Theertha Suresh, and Dave Bacon. 2016. Federated Learning: Strategies for Improving Communication Efficiency. In Workshop on Private Multi-Party Machine Learning - NeurIPS."},{"key":"e_1_3_2_1_24_1","doi-asserted-by":"crossref","unstructured":"Li Li Haoyi Xiong Zhishan Guo Jun Wang and Cheng-Zhong Xu. 2019. SmartPC: Hierarchical Pace Control in Real-Time Federated Learning System. In RTSS. Li Li Haoyi Xiong Zhishan Guo Jun Wang and Cheng-Zhong Xu. 2019. SmartPC: Hierarchical Pace Control in Real-Time Federated Learning System. In RTSS.","DOI":"10.1109\/RTSS46320.2019.00043"},{"key":"e_1_3_2_1_25_1","volume-title":"Alexander J. Smola, Amr Ahmed, Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su.","author":"Li Mu","year":"2014","unstructured":"Mu Li , David G. Andersen , Jun Woo Park , Alexander J. Smola, Amr Ahmed, Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. 2014 . Scaling Distributed Machine Learning with the Parameter Server. In OSDI. Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. 2014. Scaling Distributed Machine Learning with the Parameter Server. In OSDI."},{"key":"e_1_3_2_1_26_1","doi-asserted-by":"publisher","DOI":"10.1109\/MSP.2020.2975749"},{"key":"e_1_3_2_1_27_1","volume-title":"Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.","author":"Li Tian","year":"2020","unstructured":"Tian Li , Anit Kumar Sahu , Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. 2020 . Federated Optimization in Heterogeneous Networks. In MLSys . Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. 2020. Federated Optimization in Heterogeneous Networks. In MLSys."},{"key":"e_1_3_2_1_28_1","unstructured":"Tian Li Maziar Sanjabi Ahmad Beirami and Virginia Smith. 2020. Fair Resource Allocation in Federated Learning. In ICLR. Tian Li Maziar Sanjabi Ahmad Beirami and Virginia Smith. 2020. Fair Resource Allocation in Federated Learning. In ICLR."},{"key":"e_1_3_2_1_29_1","doi-asserted-by":"crossref","unstructured":"Ziwei Liu Ping Luo Xiaogang Wang and Xiaoou Tang. 2015. Deep Learning Face Attributes in the Wild. In ICCV. Ziwei Liu Ping Luo Xiaogang Wang and Xiaoou Tang. 2015. Deep Learning Face Attributes in the Wild. In ICCV.","DOI":"10.1109\/ICCV.2015.425"},{"key":"e_1_3_2_1_30_1","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2020.2978082"},{"key":"e_1_3_2_1_31_1","unstructured":"Liang Luo Peter West Arvind Krishnamurthy Luis Ceze and Jacob Nelson. 2020. PLink: Discovering and Exploiting Datacenter Network Locality for Efficient Cloud-based Distributed Training. In MLSys. Liang Luo Peter West Arvind Krishnamurthy Luis Ceze and Jacob Nelson. 2020. PLink: Discovering and Exploiting Datacenter Network Locality for Efficient Cloud-based Distributed Training. In MLSys."},{"key":"e_1_3_2_1_32_1","unstructured":"H. Brendan McMahan Eider Moore Daniel Ramage Seth Hampson and Blaise Ag\u00fcera y Arcas. 2017. Communication-Efficient Learning of Deep Networks from Decentralized Data. In AISTATS. H. Brendan McMahan Eider Moore Daniel Ramage Seth Hampson and Blaise Ag\u00fcera y Arcas. 2017. Communication-Efficient Learning of Deep Networks from Decentralized Data. In AISTATS."},{"key":"e_1_3_2_1_33_1","unstructured":"H. Brendan McMahan Daniel Ramage Kunal Talwar and Li Zhang. 2018. Learning Differentially Private Recurrent Language Models. In ICLR. H. Brendan McMahan Daniel Ramage Kunal Talwar and Li Zhang. 2018. Learning Differentially Private Recurrent Language Models. In ICLR."},{"key":"e_1_3_2_1_34_1","volume-title":"Exploiting Unintended Feature Leakage in Collaborative Learning. In IEEE Symposium on Security and Privacy (SP).","author":"Melis Luca","year":"2019","unstructured":"Luca Melis , Congzheng Song , Emiliano De Cristofaro , and Vitaly Shmatikov . 2019 . Exploiting Unintended Feature Leakage in Collaborative Learning. In IEEE Symposium on Security and Privacy (SP). Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. 2019. Exploiting Unintended Feature Leakage in Collaborative Learning. In IEEE Symposium on Security and Privacy (SP)."},{"key":"e_1_3_2_1_35_1","unstructured":"Mehryar Mohri Gary Sivek and Ananda Theertha Suresh. 2019. Agnostic Federated Learning. In ICML. Mehryar Mohri Gary Sivek and Ananda Theertha Suresh. 2019. Agnostic Federated Learning. In ICML."},{"key":"e_1_3_2_1_36_1","doi-asserted-by":"publisher","DOI":"10.1109\/SP.2019.00065"},{"key":"e_1_3_2_1_37_1","doi-asserted-by":"crossref","unstructured":"Takayuki Nishio and Ryo Yonetani. 2019. Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge. In ICC. Takayuki Nishio and Ryo Yonetani. 2019. Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge. In ICC.","DOI":"10.1109\/ICC.2019.8761315"},{"key":"e_1_3_2_1_38_1","unstructured":"PaddlePaddle.org. 2020. PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice. (2020). https:\/\/github.com\/PaddlePaddle\/PaddleFL PaddlePaddle.org. 2020. PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice. (2020). https:\/\/github.com\/PaddlePaddle\/PaddleFL"},{"key":"e_1_3_2_1_39_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jpdc.2008.09.002"},{"key":"e_1_3_2_1_40_1","doi-asserted-by":"crossref","unstructured":"Yanghua Peng Yibo Zhu Yangrui Chen Yixin Bao Bairen Yi Chang Lan Chuan Wu and Chuanxiong Guo. 2019. A Generic Communication Scheduler for Distributed DNN Training Acceleration. In SOSP. Yanghua Peng Yibo Zhu Yangrui Chen Yixin Bao Bairen Yi Chang Lan Chuan Wu and Chuanxiong Guo. 2019. A Generic Communication Scheduler for Distributed DNN Training Acceleration. In SOSP.","DOI":"10.1145\/3341301.3359642"},{"key":"e_1_3_2_1_41_1","volume-title":"https:\/\/files.pushshift.io\/reddit\/","author":"Datasets Reddit","year":"2020","unstructured":"Pushshift.io. 2020. Reddit Datasets . ( 2020 ). https:\/\/files.pushshift.io\/reddit\/ . Pushshift.io. 2020. Reddit Datasets. (2020). https:\/\/files.pushshift.io\/reddit\/."},{"key":"e_1_3_2_1_42_1","volume-title":"Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent. In NeurIPS.","author":"Recht Benjamin","year":"2011","unstructured":"Benjamin Recht , Christopher Re , Stephen Wright , and Feng Niu . 2011 . Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent. In NeurIPS. Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. 2011. Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent. In NeurIPS."},{"key":"e_1_3_2_1_43_1","unstructured":"Amirhossein Reisizadeh Aryan Mokhtari Hamed Hassani Ali Jadbabaie and Ramtin Pedarsani. 2020. FedPAQ: A Communication-Efficient Federated Learning Method with Periodic Averaging and Quantization. In AISTATS. Amirhossein Reisizadeh Aryan Mokhtari Hamed Hassani Ali Jadbabaie and Ramtin Pedarsani. 2020. FedPAQ: A Communication-Efficient Federated Learning Method with Periodic Averaging and Quantization. In AISTATS."},{"key":"e_1_3_2_1_44_1","unstructured":"Yichen Ruan Xiaoxi Zhang Shu-Che Liang and Carlee Joe-Wong. 2021. Towards Flexible Device Participation in Federated Learning. In AISTATS. Yichen Ruan Xiaoxi Zhang Shu-Che Liang and Carlee Joe-Wong. 2021. Towards Flexible Device Participation in Federated Learning. In AISTATS."},{"key":"e_1_3_2_1_45_1","volume-title":"A generic framework for privacy preserving deep learning. arXiv","author":"Ryffel Theo","year":"1811","unstructured":"Theo Ryffel , Andrew Trask , Morten Dahl , Bobby Wagner , Jason Mancuso , Daniel Rueckert , and Jonathan Passerat-Palmbach . 2018. A generic framework for privacy preserving deep learning. arXiv 1811 .04017 (2018). Theo Ryffel, Andrew Trask, Morten Dahl, Bobby Wagner, Jason Mancuso, Daniel Rueckert, and Jonathan Passerat-Palmbach. 2018. A generic framework for privacy preserving deep learning. arXiv 1811.04017 (2018)."},{"key":"e_1_3_2_1_46_1","volume-title":"Horovod: fast and easy distributed deep learning in TensorFlow. arXiv:1802.05799","author":"Sergeev Alexander","year":"2018","unstructured":"Alexander Sergeev and Mike Del Balso . 2018. Horovod: fast and easy distributed deep learning in TensorFlow. arXiv:1802.05799 ( 2018 ). Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed deep learning in TensorFlow. arXiv:1802.05799 (2018)."},{"key":"e_1_3_2_1_47_1","unstructured":"Virginia Smith Chao-Kai Chiang Maziar Sanjabi and Ameet S Talwalkar. 2017. Federated Multi-Task Learning. In NeurIPS. Virginia Smith Chao-Kai Chiang Maziar Sanjabi and Ameet S Talwalkar. 2017. Federated Multi-Task Learning. In NeurIPS."},{"key":"e_1_3_2_1_48_1","unstructured":"tensorflow.org. 2020. TensorFlow Federated: Machine Learning on Decentralized Data. (2020). https:\/\/www.tensorflow.org\/federated tensorflow.org. 2020. TensorFlow Federated: Machine Learning on Decentralized Data. (2020). https:\/\/www.tensorflow.org\/federated"},{"key":"e_1_3_2_1_49_1","unstructured":"Jianyu Wang Qinghua Liu Hao Liang Gauri Joshi and H. Vincent Poor. 2020. Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization. In NeurIPS. Jianyu Wang Qinghua Liu Hao Liang Gauri Joshi and H. Vincent Poor. 2020. Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization. In NeurIPS."},{"key":"e_1_3_2_1_50_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPDS.2020.3040867"},{"key":"e_1_3_2_1_51_1","volume-title":"Konstantinos Karatsenidis, Marco Canini, and Panos Kalnis.","author":"Xu Hang","year":"2021","unstructured":"Hang Xu , Chen-Yu Ho , Ahmed M. Abdelmoniem , Aritra Dutta , El Houcine Bergou , Konstantinos Karatsenidis, Marco Canini, and Panos Kalnis. 2021 . GRACE : A Compressed Communication Framework for Distributed Machine Learning. In ICDCS. Hang Xu, Chen-Yu Ho, Ahmed M. Abdelmoniem, Aritra Dutta, El Houcine Bergou, Konstantinos Karatsenidis, Marco Canini, and Panos Kalnis. 2021. GRACE: A Compressed Communication Framework for Distributed Machine Learning. In ICDCS."},{"key":"e_1_3_2_1_52_1","doi-asserted-by":"publisher","DOI":"10.1145\/3442381.3449851"},{"key":"e_1_3_2_1_53_1","doi-asserted-by":"publisher","DOI":"10.1145\/3298981"},{"key":"e_1_3_2_1_54_1","volume-title":"Applied Federated Learning: Improving Google Keyboard Query Suggestions. arXiv","author":"Yang Timothy","year":"1812","unstructured":"Timothy Yang , Galen Andrew , Hubert Eichner , Haicheng Sun , Wei Li , Nicholas Kong , Daniel Ramage , and Fran\u00e7oise Beaufays . 2018. Applied Federated Learning: Improving Google Keyboard Query Suggestions. arXiv 1812 .02903 (2018). Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas Kong, Daniel Ramage, and Fran\u00e7oise Beaufays. 2018. Applied Federated Learning: Improving Google Keyboard Query Suggestions. arXiv 1812.02903 (2018)."}],"event":{"name":"EuroSys '22: Seventeenth European Conference on Computer Systems","location":"Rennes France","acronym":"EuroSys '22","sponsor":["SIGOPS ACM Special Interest Group on Operating Systems"]},"container-title":["Proceedings of the 2nd European Workshop on Machine Learning and Systems"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3517207.3526969","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,4,5]],"date-time":"2023-04-05T10:07:42Z","timestamp":1680689262000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3517207.3526969"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,4,5]]},"references-count":54,"alternative-id":["10.1145\/3517207.3526969","10.1145\/3517207"],"URL":"https:\/\/doi.org\/10.1145\/3517207.3526969","relation":{},"subject":[],"published":{"date-parts":[[2022,4,5]]},"assertion":[{"value":"2022-04-05","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}