{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,6]],"date-time":"2024-09-06T11:10:21Z","timestamp":1725621021276},"publisher-location":"New York, NY, USA","reference-count":29,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2021,12,22]]},"DOI":"10.1145\/3511176.3511199","type":"proceedings-article","created":{"date-parts":[[2022,3,12]],"date-time":"2022-03-12T23:18:23Z","timestamp":1647127103000},"page":"148-154","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":0,"title":["A fine-grained classification method based on self-attention Siamese network"],"prefix":"10.1145","author":[{"given":"He","family":"Can","sequence":"first","affiliation":[{"name":"School of Information Yunnan Science and Technology Academy, Yunnan University, China"}]},{"given":"Yuan","family":"Guo Wu","sequence":"additional","affiliation":[{"name":"School of Information Yunnan Science and Technology Academy, Yunnan University, China"}]},{"given":"Wu","family":"Hao","sequence":"additional","affiliation":[{"name":"School of Information Yunnan Science and Technology Academy, Yunnan University, China"}]}],"member":"320","published-online":{"date-parts":[[2022,3,12]]},"reference":[{"volume-title":"ICML deep learning workshop","series-title":"Vol. 2","author":"Koch G.","key":"e_1_3_2_1_1_1","unstructured":"Koch , G. , Zemel , R. , & Salakhutdinov , R. (2015, July ). Siamese neural networks for one-shot image recognition . In ICML deep learning workshop ( Vol. 2 ). Koch, G., Zemel, R., & Salakhutdinov, R. (2015, July). Siamese neural networks for one-shot image recognition. In ICML deep learning workshop (Vol. 2)."},{"volume-title":"Prototypical networks for few-shot learning. arXiv preprint arXiv:1703.05175","year":"2017","author":"Snell J.","key":"e_1_3_2_1_2_1","unstructured":"Snell , J. , Swersky , K. , & Zemel , R. S. ( 2017 ). Prototypical networks for few-shot learning. arXiv preprint arXiv:1703.05175 . Snell, J., Swersky, K., & Zemel, R. S. (2017). Prototypical networks for few-shot learning. arXiv preprint arXiv:1703.05175."},{"volume-title":"Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25, 1097-1105","year":"2012","author":"Krizhevsky A.","key":"e_1_3_2_1_3_1","unstructured":"Krizhevsky , A. , Sutskever , I. , & Hinton , G. E. ( 2012 ). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25, 1097-1105 . Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25, 1097-1105."},{"volume-title":"Swin transformer: Hierarchical vision transformer using shifted windows. arXiv preprint arXiv:2103.14030","year":"2021","author":"Liu Z.","key":"e_1_3_2_1_4_1","unstructured":"Liu , Z. , Lin , Y. , Cao , Y. , Hu , H. , Wei , Y. , Zhang , Z. , ... & Guo , B. ( 2021 ). Swin transformer: Hierarchical vision transformer using shifted windows. arXiv preprint arXiv:2103.14030 . Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., ... & Guo, B. (2021). Swin transformer: Hierarchical vision transformer using shifted windows. arXiv preprint arXiv:2103.14030."},{"volume-title":"Matching networks for one shot learning. Advances in neural information processing systems, 29, 3630-3638","year":"2016","author":"Vinyals O.","key":"e_1_3_2_1_5_1","unstructured":"Vinyals , O. , Blundell , C. , Lillicrap , T. , & Wierstra , D. ( 2016 ). Matching networks for one shot learning. Advances in neural information processing systems, 29, 3630-3638 . Vinyals, O., Blundell, C., Lillicrap, T., & Wierstra, D. (2016). Matching networks for one shot learning. Advances in neural information processing systems, 29, 3630-3638."},{"volume-title":"Data augmentation generative adversarial networks. arXiv preprint arXiv:1711.04340","year":"2017","author":"Antoniou A.","key":"e_1_3_2_1_6_1","unstructured":"Antoniou , A. , Storkey , A. , & Edwards , H. ( 2017 ). Data augmentation generative adversarial networks. arXiv preprint arXiv:1711.04340 . Antoniou, A., Storkey, A., & Edwards, H. (2017). Data augmentation generative adversarial networks. arXiv preprint arXiv:1711.04340."},{"volume-title":"Task augmentation by rotating for meta-learning. arXiv preprint arXiv:2003.00804","year":"2020","author":"Liu J.","key":"e_1_3_2_1_7_1","unstructured":"Liu , J. , Chao , F. , & Lin , C. M. ( 2020 ). Task augmentation by rotating for meta-learning. arXiv preprint arXiv:2003.00804 . Liu, J., Chao, F., & Lin, C. M. (2020). Task augmentation by rotating for meta-learning. arXiv preprint arXiv:2003.00804."},{"key":"e_1_3_2_1_8_1","first-page":"3379","volume-title":"Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33","author":"Chen Z.","year":"2019","unstructured":"Chen , Z. , Fu , Y. , Chen , K. , & Jiang , Y. G. ( 2019 , July). Image block augmentation for one-shot learning . In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33 , No. 01, pp. 3379 - 3386 ). Chen, Z., Fu, Y., Chen, K., & Jiang, Y. G. (2019, July). Image block augmentation for one-shot learning. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 3379-3386)."},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.328"},{"key":"e_1_3_2_1_10_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00131"},{"key":"e_1_3_2_1_11_1","unstructured":"Bahdanau D Cho K Bengio Y Visin F Yin H. 2014. Meta-Learning to Align and Translate[J]. Bahdanau D Cho K Bengio Y Visin F Yin H. 2014. Meta-Learning to Align and Translate[J]."},{"volume-title":"An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929","year":"2020","author":"Dosovitskiy A.","key":"e_1_3_2_1_12_1","unstructured":"Dosovitskiy , A. , Beyer , L. , Kolesnikov , A. , Weissenborn , D. , Zhai , X. , Unterthiner , T. , ... & Houlsby , N. ( 2020 ). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 . Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929."},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2015.2389824"},{"key":"e_1_3_2_1_14_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00119"},{"volume-title":"Deep Convolutional Neural Networks: A survey of the foundations, selected improvements, and some current applications. arXiv preprint arXiv:2011.12960","year":"2020","author":"Ankile L. L.","key":"e_1_3_2_1_15_1","unstructured":"Ankile , L. L. , Heggland , M. F. , & Krange , K. ( 2020 ). Deep Convolutional Neural Networks: A survey of the foundations, selected improvements, and some current applications. arXiv preprint arXiv:2011.12960 . Ankile, L. L., Heggland, M. F., & Krange, K. (2020). Deep Convolutional Neural Networks: A survey of the foundations, selected improvements, and some current applications. arXiv preprint arXiv:2011.12960."},{"volume-title":"International conference on machine learning (pp. 2048-2057)","year":"2015","author":"Xu K.","key":"e_1_3_2_1_16_1","unstructured":"Xu , K. , Ba , J. , Kiros , R. , Cho , K. , Courville , A. , Salakhudinov , R. , ... & Bengio , Y. ( 2015 , June). Show, attend and tell: Neural image caption generation with visual attention . In International conference on machine learning (pp. 2048-2057) . PMLR. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., ... & Bengio, Y. (2015, June). Show, attend and tell: Neural image caption generation with visual attention. In International conference on machine learning (pp. 2048-2057). PMLR."},{"volume-title":"Spatial transformer networks. Advances in neural information processing systems, 28","year":"2015","author":"Jaderberg M.","key":"e_1_3_2_1_17_1","unstructured":"Jaderberg , M. , Simonyan , K. , & Zisserman , A. ( 2015 ). Spatial transformer networks. Advances in neural information processing systems, 28 , 2017-2025. Jaderberg, M., Simonyan, K., & Zisserman, A. (2015). Spatial transformer networks. Advances in neural information processing systems, 28, 2017-2025."},{"volume-title":"Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556","year":"2014","author":"Simonyan K.","key":"e_1_3_2_1_18_1","unstructured":"Simonyan , K. , & Zisserman , A. ( 2014 ). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 . Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556."},{"key":"e_1_3_2_1_19_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.01214"},{"volume-title":"Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861","year":"2017","author":"Howard A. G.","key":"e_1_3_2_1_20_1","unstructured":"Howard , A. G. , Zhu , M. , Chen , B. , Kalenichenko , D. , Wang , W. , Weyand , T. , ... & Adam , H. ( 2017 ). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 . Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., ... & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861."},{"volume-title":"Control Distance IoU and Control Distance IoU Loss Function for Better Bounding Box Regression. arXiv preprint arXiv:2103.11696","year":"2021","author":"Chen D.","key":"e_1_3_2_1_21_1","unstructured":"Chen , D. , & Miao , D. ( 2021 ). Control Distance IoU and Control Distance IoU Loss Function for Better Bounding Box Regression. arXiv preprint arXiv:2103.11696 . Chen, D., & Miao, D. (2021). Control Distance IoU and Control Distance IoU Loss Function for Better Bounding Box Regression. arXiv preprint arXiv:2103.11696."},{"key":"e_1_3_2_1_22_1","unstructured":"Kullback-Leibler Divergence Explained. 2016. https:\/\/www. Count bay esie.com\/blog\/2017\/5\/9\/kullback-leibler-divergence-explained. Kullback-Leibler Divergence Explained. 2016. https:\/\/www. Count bay esie.com\/blog\/2017\/5\/9\/kullback-leibler-divergence-explained."},{"key":"e_1_3_2_1_23_1","doi-asserted-by":"publisher","DOI":"10.1109\/34.730558"},{"volume-title":"The dynamic representation of scenes. Visual cognition, 7(1-3), 17-42","year":"2000","author":"Rensink R. A.","key":"e_1_3_2_1_24_1","unstructured":"Rensink , R. A. ( 2000 ). The dynamic representation of scenes. Visual cognition, 7(1-3), 17-42 . Rensink, R. A. (2000). The dynamic representation of scenes. Visual cognition, 7(1-3), 17-42."},{"key":"e_1_3_2_1_25_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00745"},{"volume-title":"Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4), 541-551","year":"1989","author":"LeCun Y.","key":"e_1_3_2_1_26_1","unstructured":"LeCun , Y. , Boser , B. , Denker , J. S. , Henderson , D. , Howard , R. E. , Hubbard , W. , & Jackel , L. D. ( 1989 ). Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4), 541-551 . LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4), 541-551."},{"volume-title":"Deep learning for fine-grained image analysis: A survey. arXiv preprint arXiv:1907.03069","year":"2019","author":"Wei X. S.","key":"e_1_3_2_1_27_1","unstructured":"Wei , X. S. , Wu , J. , & Cui , Q. ( 2019 ). Deep learning for fine-grained image analysis: A survey. arXiv preprint arXiv:1907.03069 . Wei, X. S., Wu, J., & Cui, Q. (2019). Deep learning for fine-grained image analysis: A survey. arXiv preprint arXiv:1907.03069."},{"key":"e_1_3_2_1_28_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.170"},{"volume-title":"Meta-learning for semi-supervised few-shot classification. arXiv preprint arXiv:1803.00676","year":"2018","author":"Ren M.","key":"e_1_3_2_1_29_1","unstructured":"Ren , M. , Triantafillou , E. , Ravi , S. , Snell , J. , Swersky , K. , Tenenbaum , J. B., . .. & Zemel , R. S. ( 2018 ). Meta-learning for semi-supervised few-shot classification. arXiv preprint arXiv:1803.00676 . Ren, M., Triantafillou, E., Ravi, S., Snell, J., Swersky, K., Tenenbaum, J. B., ... & Zemel, R. S. (2018). Meta-learning for semi-supervised few-shot classification. arXiv preprint arXiv:1803.00676."}],"event":{"name":"ICVIP 2021: 2021 The 5th International Conference on Video and Image Processing","acronym":"ICVIP 2021","location":"Hayward CA USA"},"container-title":["2021 The 5th International Conference on Video and Image Processing"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3511176.3511199","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,13]],"date-time":"2023-01-13T01:52:45Z","timestamp":1673574765000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3511176.3511199"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,12,22]]},"references-count":29,"alternative-id":["10.1145\/3511176.3511199","10.1145\/3511176"],"URL":"https:\/\/doi.org\/10.1145\/3511176.3511199","relation":{},"subject":[],"published":{"date-parts":[[2021,12,22]]},"assertion":[{"value":"2022-03-12","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}