{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T21:50:18Z","timestamp":1730325018160,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":16,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2021,11,20]]},"DOI":"10.1145\/3505711.3505716","type":"proceedings-article","created":{"date-parts":[[2022,3,29]],"date-time":"2022-03-29T02:20:17Z","timestamp":1648520417000},"page":"31-37","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":0,"title":["Towards Quantification of Explainability Algorithms"],"prefix":"10.1145","author":[{"given":"Pratyush","family":"Rokade","sequence":"first","affiliation":[{"name":"SCOPE, VIT-AP, India"}]},{"given":"BKSP Kumar Raju","family":"Alluri","sequence":"additional","affiliation":[{"name":"SCOPE, VIT-AP, India"}]}],"member":"320","published-online":{"date-parts":[[2022,3,28]]},"reference":[{"key":"e_1_3_2_2_1_1","doi-asserted-by":"publisher","DOI":"10.5555\/3327757.3327875"},{"key":"e_1_3_2_2_2_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"e_1_3_2_2_3_1","volume-title":"TIP: Typifying the Interpretability of Procedures. ArXiv abs\/1706.02952(2017).","author":"Dhurandhar A.","year":"2017","unstructured":"A. Dhurandhar , Vijay Iyengar , Ronny Luss , and Karthikeyan Shanmugam . 2017 . TIP: Typifying the Interpretability of Procedures. ArXiv abs\/1706.02952(2017). A. Dhurandhar, Vijay Iyengar, Ronny Luss, and Karthikeyan Shanmugam. 2017. TIP: Typifying the Interpretability of Procedures. ArXiv abs\/1706.02952(2017)."},{"key":"e_1_3_2_2_4_1","unstructured":"Sorelle\u00a0A Friedler Chitradeep\u00a0Dutta Roy Carlos Scheidegger and Dylan Slack. 2019. Assessing the Local Interpretability of Machine Learning Models. arXiv preprint arXiv:1902.03501(2019). Sorelle\u00a0A Friedler Chitradeep\u00a0Dutta Roy Carlos Scheidegger and Dylan Slack. 2019. Assessing the Local Interpretability of Machine Learning Models. arXiv preprint arXiv:1902.03501(2019)."},{"key":"e_1_3_2_2_5_1","volume-title":"Measuring the Quality of Explanations: The System Causability Scale (SCS). KI - K\u00fcnstliche Intelligenz 34, 2 (01","author":"Holzinger Andreas","year":"2020","unstructured":"Andreas Holzinger , Andr\u00e9 Carrington , and Heimo M\u00fcller . 2020. Measuring the Quality of Explanations: The System Causability Scale (SCS). KI - K\u00fcnstliche Intelligenz 34, 2 (01 Jun 2020 ), 193\u2013198. https:\/\/doi.org\/10.1007\/s13218-020-00636-z Andreas Holzinger, Andr\u00e9 Carrington, and Heimo M\u00fcller. 2020. Measuring the Quality of Explanations: The System Causability Scale (SCS). KI - K\u00fcnstliche Intelligenz 34, 2 (01 Jun 2020), 193\u2013198. https:\/\/doi.org\/10.1007\/s13218-020-00636-z"},{"key":"e_1_3_2_2_6_1","unstructured":"S.\u00a0R. Islam W. Eberle and S. Ghafoor. 2020. Towards Quantification of Explainability in Explainable Artificial Intelligence Methods. ArXiv abs\/1911.10104(2020). S.\u00a0R. Islam W. Eberle and S. Ghafoor. 2020. Towards Quantification of Explainability in Explainable Artificial Intelligence Methods. ArXiv abs\/1911.10104(2020)."},{"key":"e_1_3_2_2_7_1","unstructured":"Been Kim Martin Wattenberg Justin Gilmer Carrie Cai James Wexler Fernanda Viegas and Rory Sayres. 2018. Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV). arxiv:1711.11279\u00a0[stat.ML] Been Kim Martin Wattenberg Justin Gilmer Carrie Cai James Wexler Fernanda Viegas and Rory Sayres. 2018. Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV). arxiv:1711.11279\u00a0[stat.ML]"},{"volume-title":"Proceedings of the 31st International Conference on Neural Information Processing Systems","author":"M.","key":"e_1_3_2_2_8_1","unstructured":"Scott\u00a0 M. Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting Model Predictions . In Proceedings of the 31st International Conference on Neural Information Processing Systems ( Long Beach, California, USA) (NIPS\u201917). Curran Associates Inc., Red Hook, NY, USA, 4768\u20134777. Scott\u00a0M. Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting Model Predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems (Long Beach, California, USA) (NIPS\u201917). Curran Associates Inc., Red Hook, NY, USA, 4768\u20134777."},{"key":"e_1_3_2_2_9_1","doi-asserted-by":"publisher","DOI":"10.1073\/pnas.1900654116"},{"key":"e_1_3_2_2_10_1","doi-asserted-by":"publisher","DOI":"10.1145\/2939672.2939778"},{"key":"e_1_3_2_2_11_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.74"},{"key":"e_1_3_2_2_12_1","volume-title":"Proceedings of the 34th International Conference on Machine Learning -","volume":"70","author":"Shrikumar Avanti","year":"2017","unstructured":"Avanti Shrikumar , Peyton Greenside , and Anshul Kundaje . 2017 . Learning Important Features through Propagating Activation Differences . In Proceedings of the 34th International Conference on Machine Learning - Volume 70 (Sydney, NSW, Australia) (ICML\u201917). JMLR.org, 3145\u20133153. Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. 2017. Learning Important Features through Propagating Activation Differences. In Proceedings of the 34th International Conference on Machine Learning - Volume 70 (Sydney, NSW, Australia) (ICML\u201917). JMLR.org, 3145\u20133153."},{"key":"e_1_3_2_2_13_1","volume-title":"Proceedings of the 34th International Conference on Machine Learning -","volume":"70","author":"Sundararajan Mukund","year":"2017","unstructured":"Mukund Sundararajan , Ankur Taly , and Qiqi Yan . 2017 . Axiomatic Attribution for Deep Networks . In Proceedings of the 34th International Conference on Machine Learning - Volume 70 (Sydney, NSW, Australia) (ICML\u201917). JMLR.org, 3319\u20133328. Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic Attribution for Deep Networks. In Proceedings of the 34th International Conference on Machine Learning - Volume 70 (Sydney, NSW, Australia) (ICML\u201917). JMLR.org, 3319\u20133328."},{"key":"e_1_3_2_2_14_1","doi-asserted-by":"publisher","DOI":"10.5555\/3298023.3298188"},{"key":"e_1_3_2_2_15_1","volume-title":"Rethinking the Inception Architecture for Computer Vision. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society","author":"Szegedy C.","year":"2016","unstructured":"C. Szegedy , V. Vanhoucke , S. Ioffe , J. Shlens , and Z. Wojna . 2016 . Rethinking the Inception Architecture for Computer Vision. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society , Los Alamitos, CA, USA, 2818\u20132826. https:\/\/doi.org\/10.1109\/CVPR. 2016 .308 C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. 2016. Rethinking the Inception Architecture for Computer Vision. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, Los Alamitos, CA, USA, 2818\u20132826. https:\/\/doi.org\/10.1109\/CVPR.2016.308"},{"key":"e_1_3_2_2_16_1","volume-title":"Learning Transferable Architectures for Scalable Image Recognition. In 2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition. 8697\u20138710","author":"Zoph Barret","year":"2018","unstructured":"Barret Zoph , Vijay Vasudevan , Jonathon Shlens , and Quoc\u00a0 V. Le . 2018 . Learning Transferable Architectures for Scalable Image Recognition. In 2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition. 8697\u20138710 . https:\/\/doi.org\/10.1109\/CVPR.2018.00907 Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc\u00a0V. Le. 2018. Learning Transferable Architectures for Scalable Image Recognition. In 2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition. 8697\u20138710. https:\/\/doi.org\/10.1109\/CVPR.2018.00907"}],"event":{"name":"ICAAI 2021: 2021 the 5th International Conference on Advances in Artificial Intelligence","acronym":"ICAAI 2021","location":"Virtual Event United Kingdom"},"container-title":["2021 The 5th International Conference on Advances in Artificial Intelligence (ICAAI)"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3505711.3505716","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,14]],"date-time":"2023-01-14T23:59:14Z","timestamp":1673740754000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3505711.3505716"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,11,20]]},"references-count":16,"alternative-id":["10.1145\/3505711.3505716","10.1145\/3505711"],"URL":"https:\/\/doi.org\/10.1145\/3505711.3505716","relation":{},"subject":[],"published":{"date-parts":[[2021,11,20]]},"assertion":[{"value":"2022-03-28","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}