{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T05:06:05Z","timestamp":1725167165543},"publisher-location":"New York, NY, USA","reference-count":55,"publisher":"ACM","funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61972188,62122035"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2022,10,10]]},"DOI":"10.1145\/3503161.3548232","type":"proceedings-article","created":{"date-parts":[[2022,10,10]],"date-time":"2022-10-10T15:42:35Z","timestamp":1665416555000},"update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":3,"title":["Towards Continual Adaptation in Industrial Anomaly Detection"],"prefix":"10.1145","author":[{"given":"Wujin","family":"Li","sequence":"first","affiliation":[{"name":"Tsinghua University, Shenzhen, China"}]},{"given":"Jiawei","family":"Zhan","sequence":"additional","affiliation":[{"name":"Tencent YouTu Lab, Shenzhen, China"}]},{"given":"Jinbao","family":"Wang","sequence":"additional","affiliation":[{"name":"Southern University of Science and Technology, Shenzhen, China"}]},{"given":"Bizhong","family":"Xia","sequence":"additional","affiliation":[{"name":"Tsinghua University, Shenzhen, China"}]},{"given":"Bin-Bin","family":"Gao","sequence":"additional","affiliation":[{"name":"Tencent YouTu Lab, Shenzhen, China"}]},{"given":"Jun","family":"Liu","sequence":"additional","affiliation":[{"name":"Tencent YouTu Lab, Shenzhen, China"}]},{"given":"Chengjie","family":"Wang","sequence":"additional","affiliation":[{"name":"Tencent YouTu Lab, Shenzhen, China"}]},{"given":"Feng","family":"Zheng","sequence":"additional","affiliation":[{"name":"CSE & RITAS, Southern University of Science and Technology, Shenzhen, China"}]}],"member":"320","published-online":{"date-parts":[[2022,10,10]]},"reference":[{"key":"e_1_3_2_2_1_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00982"},{"key":"e_1_3_2_2_2_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00424"},{"key":"e_1_3_2_2_3_1","volume-title":"Improving unsupervised defect segmentation by applying structural similarity to autoencoders. arXiv preprint arXiv:1807.02011","author":"Bergmann Paul","year":"2018","unstructured":"Paul Bergmann , Sindy L\u00f6we , Michael Fauser , David Sattlegger , and Carsten Steger . 2018. Improving unsupervised defect segmentation by applying structural similarity to autoencoders. arXiv preprint arXiv:1807.02011 ( 2018 ). Paul Bergmann, Sindy L\u00f6we, Michael Fauser, David Sattlegger, and Carsten Steger. 2018. Improving unsupervised defect segmentation by applying structural similarity to autoencoders. arXiv preprint arXiv:1807.02011 (2018)."},{"key":"e_1_3_2_2_4_1","volume-title":"Dark experience for general continual learning: a strong, simple baseline. Advances in neural information processing systems 33","author":"Buzzega Pietro","year":"2020","unstructured":"Pietro Buzzega , Matteo Boschini , Angelo Porrello , Davide Abati , and Simone Calderara . 2020. Dark experience for general continual learning: a strong, simple baseline. Advances in neural information processing systems 33 ( 2020 ), 15920--15930. Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. 2020. Dark experience for general continual learning: a strong, simple baseline. Advances in neural information processing systems 33 (2020), 15920--15930."},{"key":"e_1_3_2_2_5_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV48922.2021.00938"},{"key":"e_1_3_2_2_6_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01252-6_33"},{"key":"e_1_3_2_2_7_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-68799-1_35"},{"key":"e_1_3_2_2_8_1","volume-title":"Anomaly Detection via Reverse Distillation from One-Class Embedding. arXiv preprint arXiv:2201.10703","author":"Deng Hanqiu","year":"2022","unstructured":"Hanqiu Deng and Xingyu Li. 2022. Anomaly Detection via Reverse Distillation from One-Class Embedding. arXiv preprint arXiv:2201.10703 ( 2022 ). Hanqiu Deng and Xingyu Li. 2022. Anomaly Detection via Reverse Distillation from One-Class Embedding. arXiv preprint arXiv:2201.10703 (2022)."},{"key":"e_1_3_2_2_9_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"e_1_3_2_2_10_1","volume-title":"et al","author":"Dosovitskiy Alexey","year":"2020","unstructured":"Alexey Dosovitskiy , Lucas Beyer , Alexander Kolesnikov , Dirk Weissenborn , Xiaohua Zhai , Thomas Unterthiner , Mostafa Dehghani , Matthias Minderer , Georg Heigold , Sylvain Gelly , et al . 2020 . An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020). Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al . 2020. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)."},{"key":"e_1_3_2_2_11_1","doi-asserted-by":"publisher","DOI":"10.1109\/WACV51458.2022.00214"},{"key":"e_1_3_2_2_12_1","volume-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision. 1705--1714","author":"Gong Dong","unstructured":"Dong Gong , Lingqiao Liu , Vuong Le , Budhaditya Saha , Moussa Reda Mansour , Svetha Venkatesh , and Anton van den Hengel. 2019. Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection . In Proceedings of the IEEE\/CVF International Conference on Computer Vision. 1705--1714 . Dong Gong, Lingqiao Liu, Vuong Le, Budhaditya Saha, Moussa Reda Mansour, Svetha Venkatesh, and Anton van den Hengel. 2019. Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection. In Proceedings of the IEEE\/CVF International Conference on Computer Vision. 1705--1714."},{"key":"e_1_3_2_2_13_1","doi-asserted-by":"publisher","DOI":"10.1007\/s00371-018-1588-5"},{"key":"e_1_3_2_2_14_1","doi-asserted-by":"publisher","DOI":"10.1073\/pnas.1611835114"},{"key":"e_1_3_2_2_15_1","unstructured":"Alex Krizhevsky Geoffrey Hinton etal 2009. Learning multiple layers of features from tiny images. (2009). Alex Krizhevsky Geoffrey Hinton et al. 2009. Learning multiple layers of features from tiny images. (2009)."},{"key":"e_1_3_2_2_16_1","doi-asserted-by":"publisher","DOI":"10.1016\/S0047-259X(03)00096-4"},{"key":"e_1_3_2_2_17_1","volume-title":"A simple unified framework for detecting out-of-distribution samples and adversarial attacks. Advances in neural information processing systems 31","author":"Lee Kimin","year":"2018","unstructured":"Kimin Lee , Kibok Lee , Honglak Lee , and Jinwoo Shin . 2018. A simple unified framework for detecting out-of-distribution samples and adversarial attacks. Advances in neural information processing systems 31 ( 2018 ). Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. 2018. A simple unified framework for detecting out-of-distribution samples and adversarial attacks. Advances in neural information processing systems 31 (2018)."},{"key":"e_1_3_2_2_18_1","volume-title":"The power of scale for parameter-efficient prompt tuning. arXiv preprint arXiv:2104.08691","author":"Lester Brian","year":"2021","unstructured":"Brian Lester , Rami Al-Rfou , and Noah Constant . 2021. The power of scale for parameter-efficient prompt tuning. arXiv preprint arXiv:2104.08691 ( 2021 ). Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The power of scale for parameter-efficient prompt tuning. arXiv preprint arXiv:2104.08691 (2021)."},{"key":"e_1_3_2_2_19_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.00954"},{"key":"e_1_3_2_2_20_1","volume-title":"International Conference on Machine Learning. PMLR, 3925--3934","author":"Li Xilai","year":"2019","unstructured":"Xilai Li , Yingbo Zhou , Tianfu Wu , Richard Socher , and Caiming Xiong . 2019 . Learn to grow: A continual structure learning framework for overcoming catastrophic forgetting . In International Conference on Machine Learning. PMLR, 3925--3934 . Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. 2019. Learn to grow: A continual structure learning framework for overcoming catastrophic forgetting. In International Conference on Machine Learning. PMLR, 3925--3934."},{"key":"e_1_3_2_2_21_1","volume-title":"Learning without forgetting","author":"Li Zhizhong","year":"2017","unstructured":"Zhizhong Li and Derek Hoiem . 2017. Learning without forgetting . IEEE transactions on pattern analysis and machine intelligence 40, 12 ( 2017 ), 2935--2947. Zhizhong Li and Derek Hoiem. 2017. Learning without forgetting. IEEE transactions on pattern analysis and machine intelligence 40, 12 (2017), 2935--2947."},{"key":"e_1_3_2_2_22_1","volume-title":"prompt, and predict: A systematic survey of prompting methods in natural language processing. arXiv preprint arXiv:2107.13586","author":"Liu Pengfei","year":"2021","unstructured":"Pengfei Liu , Weizhe Yuan , Jinlan Fu , Zhengbao Jiang , Hiroaki Hayashi , and Graham Neubig . 2021. Pre-train , prompt, and predict: A systematic survey of prompting methods in natural language processing. arXiv preprint arXiv:2107.13586 ( 2021 ). Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. 2021. Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing. arXiv preprint arXiv:2107.13586 (2021)."},{"key":"e_1_3_2_2_23_1","volume-title":"Conference on Robot Learning. PMLR, 17--26","author":"Lomonaco Vincenzo","year":"2017","unstructured":"Vincenzo Lomonaco and Davide Maltoni . 2017 . Core50: a new dataset and benchmark for continuous object recognition . In Conference on Robot Learning. PMLR, 17--26 . Vincenzo Lomonaco and Davide Maltoni. 2017. Core50: a new dataset and benchmark for continuous object recognition. In Conference on Robot Learning. PMLR, 17--26."},{"key":"e_1_3_2_2_24_1","volume-title":"Gradient episodic memory for continual learning. Advances in neural information processing systems 30","author":"Lopez-Paz David","year":"2017","unstructured":"David Lopez-Paz and Marc'Aurelio Ranzato . 2017. Gradient episodic memory for continual learning. Advances in neural information processing systems 30 ( 2017 ). David Lopez-Paz and Marc'Aurelio Ranzato. 2017. Gradient episodic memory for continual learning. Advances in neural information processing systems 30 (2017)."},{"key":"e_1_3_2_2_25_1","volume-title":"Representational Continuity for Unsupervised Continual Learning. In International Conference on Learning Representations.","author":"Madaan Divyam","year":"2021","unstructured":"Divyam Madaan , Jaehong Yoon , Yuanchun Li , Yunxin Liu , and Sung Ju Hwang . 2021 . Representational Continuity for Unsupervised Continual Learning. In International Conference on Learning Representations. Divyam Madaan, Jaehong Yoon, Yuanchun Li, Yunxin Liu, and Sung Ju Hwang. 2021. Representational Continuity for Unsupervised Continual Learning. In International Conference on Learning Representations."},{"key":"e_1_3_2_2_26_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00810"},{"key":"e_1_3_2_2_27_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.01438"},{"key":"e_1_3_2_2_28_1","volume-title":"DualNet: Continual Learning, Fast and Slow. Advances in Neural Information Processing Systems 34","author":"Pham Quang","year":"2021","unstructured":"Quang Pham , Chenghao Liu , and Steven Hoi . 2021. DualNet: Continual Learning, Fast and Slow. Advances in Neural Information Processing Systems 34 ( 2021 ). Quang Pham, Chenghao Liu, and Steven Hoi. 2021. DualNet: Continual Learning, Fast and Slow. Advances in Neural Information Processing Systems 34 (2021)."},{"key":"e_1_3_2_2_29_1","volume-title":"Yee Whye Teh, and Raia Hadsell","author":"Rao Dushyant","year":"2019","unstructured":"Dushyant Rao , Francesco Visin , Andrei Rusu , Razvan Pascanu , Yee Whye Teh, and Raia Hadsell . 2019 . Continual unsupervised representation learning. Advances in Neural Information Processing Systems 32 (2019). Dushyant Rao, Francesco Visin, Andrei Rusu, Razvan Pascanu, Yee Whye Teh, and Raia Hadsell. 2019. Continual unsupervised representation learning. Advances in Neural Information Processing Systems 32 (2019)."},{"key":"e_1_3_2_2_30_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.00283"},{"key":"e_1_3_2_2_31_1","volume-title":"Mean-shifted contrastive loss for anomaly detection. arXiv preprint arXiv:2106.03844","author":"Reiss Tal","year":"2021","unstructured":"Tal Reiss and Yedid Hoshen . 2021. Mean-shifted contrastive loss for anomaly detection. arXiv preprint arXiv:2106.03844 ( 2021 ). Tal Reiss and Yedid Hoshen. 2021. Mean-shifted contrastive loss for anomaly detection. arXiv preprint arXiv:2106.03844 (2021)."},{"key":"e_1_3_2_2_32_1","volume-title":"Learning to learn without forgetting by maximizing transfer and minimizing interference. arXiv preprint arXiv:1810.11910","author":"Riemer Matthew","year":"2018","unstructured":"Matthew Riemer , Ignacio Cases , Robert Ajemian , Miao Liu , Irina Rish , Yuhai Tu , and Gerald Tesauro . 2018. Learning to learn without forgetting by maximizing transfer and minimizing interference. arXiv preprint arXiv:1810.11910 ( 2018 ). Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald Tesauro. 2018. Learning to learn without forgetting by maximizing transfer and minimizing interference. arXiv preprint arXiv:1810.11910 (2018)."},{"key":"e_1_3_2_2_33_1","volume-title":"Transfer Learning Gaussian Anomaly Detection by Fine-Tuning Representations. arXiv preprint arXiv:2108.04116","author":"Rippel Oliver","year":"2021","unstructured":"Oliver Rippel , Arnav Chavan , Chucai Lei , and Dorit Merhof . 2021. Transfer Learning Gaussian Anomaly Detection by Fine-Tuning Representations. arXiv preprint arXiv:2108.04116 ( 2021 ). Oliver Rippel, Arnav Chavan, Chucai Lei, and Dorit Merhof. 2021. Transfer Learning Gaussian Anomaly Detection by Fine-Tuning Representations. arXiv preprint arXiv:2108.04116 (2021)."},{"key":"e_1_3_2_2_34_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICPR48806.2021.9412109"},{"key":"e_1_3_2_2_35_1","doi-asserted-by":"publisher","DOI":"10.1109\/WACV48630.2021.00195"},{"key":"e_1_3_2_2_36_1","doi-asserted-by":"publisher","DOI":"10.1109\/WACV51458.2022.00189"},{"key":"e_1_3_2_2_37_1","volume-title":"International conference on machine learning. PMLR, 4393--4402","author":"Ruff Lukas","year":"2018","unstructured":"Lukas Ruff , Robert Vandermeulen , Nico Goernitz , Lucas Deecke , Shoaib Ahmed Siddiqui , Alexander Binder , Emmanuel M\u00fcller , and Marius Kloft . 2018 . Deep one-class classification . In International conference on machine learning. PMLR, 4393--4402 . Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexander Binder, Emmanuel M\u00fcller, and Marius Kloft. 2018. Deep one-class classification. In International conference on machine learning. PMLR, 4393--4402."},{"key":"e_1_3_2_2_38_1","volume-title":"Progressive neural networks. arXiv preprint arXiv:1606.04671","author":"Rusu Andrei A","year":"2016","unstructured":"Andrei A Rusu , Neil C Rabinowitz , Guillaume Desjardins , Hubert Soyer , James Kirkpatrick , Koray Kavukcuoglu , Razvan Pascanu , and Raia Hadsell . 2016. Progressive neural networks. arXiv preprint arXiv:1606.04671 ( 2016 ). Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. 2016. Progressive neural networks. arXiv preprint arXiv:1606.04671 (2016)."},{"key":"e_1_3_2_2_39_1","volume-title":"f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks. Medical image analysis 54","author":"Schlegl Thomas","year":"2019","unstructured":"Thomas Schlegl , Philipp Seeb\u00f6ck , Sebastian M Waldstein , Georg Langs , and Ursula Schmidt-Erfurth . 2019. f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks. Medical image analysis 54 ( 2019 ), 30--44. Thomas Schlegl, Philipp Seeb\u00f6ck, Sebastian M Waldstein, Georg Langs, and Ursula Schmidt-Erfurth. 2019. f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks. Medical image analysis 54 (2019), 30--44."},{"key":"e_1_3_2_2_40_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-59050-9_12"},{"key":"e_1_3_2_2_41_1","volume-title":"Support vector method for novelty detection. Advances in neural information processing systems 12","author":"Sch\u00f6lkopf Bernhard","year":"1999","unstructured":"Bernhard Sch\u00f6lkopf , Robert C Williamson , Alex Smola , John Shawe-Taylor , and John Platt . 1999. Support vector method for novelty detection. Advances in neural information processing systems 12 ( 1999 ). Bernhard Sch\u00f6lkopf, Robert C Williamson, Alex Smola, John Shawe-Taylor, and John Platt. 1999. Support vector method for novelty detection. Advances in neural information processing systems 12 (1999)."},{"key":"e_1_3_2_2_42_1","volume-title":"Learning and evaluating representations for deep one-class classification. arXiv preprint arXiv:2011.02578","author":"Sohn Kihyuk","year":"2020","unstructured":"Kihyuk Sohn , Chun-Liang Li , Jinsung Yoon , Minho Jin , and Tomas Pfister . 2020. Learning and evaluating representations for deep one-class classification. arXiv preprint arXiv:2011.02578 ( 2020 ). Kihyuk Sohn, Chun-Liang Li, Jinsung Yoon, Minho Jin, and Tomas Pfister. 2020. Learning and evaluating representations for deep one-class classification. arXiv preprint arXiv:2011.02578 (2020)."},{"key":"e_1_3_2_2_43_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW53098.2021.00397"},{"key":"e_1_3_2_2_44_1","volume-title":"Support vector data description. Machine learning 54, 1","author":"Tax David MJ","year":"2004","unstructured":"David MJ Tax and Robert PW Duin . 2004. Support vector data description. Machine learning 54, 1 ( 2004 ), 45--66. David MJ Tax and Robert PW Duin. 2004. Support vector data description. Machine learning 54, 1 (2004), 45--66."},{"key":"e_1_3_2_2_45_1","volume-title":"Brain- inspired replay for continual learning with artificial neural networks. Nature communications 11, 1","author":"van de Ven Gido M","year":"2020","unstructured":"Gido M van de Ven , Hava T Siegelmann , and Andreas S Tolias . 2020. Brain- inspired replay for continual learning with artificial neural networks. Nature communications 11, 1 ( 2020 ), 1--14. Gido M van de Ven, Hava T Siegelmann, and Andreas S Tolias. 2020. Brain- inspired replay for continual learning with artificial neural networks. Nature communications 11, 1 (2020), 1--14."},{"key":"e_1_3_2_2_46_1","volume-title":"Three scenarios for continual learning. arXiv preprint arXiv:1904.07734","author":"Van de Ven Gido M","year":"2019","unstructured":"Gido M Van de Ven and Andreas S Tolias . 2019. Three scenarios for continual learning. arXiv preprint arXiv:1904.07734 ( 2019 ). Gido M Van de Ven and Andreas S Tolias. 2019. Three scenarios for continual learning. arXiv preprint arXiv:1904.07734 (2019)."},{"key":"e_1_3_2_2_47_1","volume-title":"Learning to Prompt for Continual Learning. arXiv preprint arXiv:2112.08654","author":"Wang Zifeng","year":"2021","unstructured":"Zifeng Wang , Zizhao Zhang , Chen-Yu Lee , Han Zhang , Ruoxi Sun , Xiaoqi Ren , Guolong Su , Vincent Perot , Jennifer Dy , and Tomas Pfister . 2021. Learning to Prompt for Continual Learning. arXiv preprint arXiv:2112.08654 ( 2021 ). Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent Perot, Jennifer Dy, and Tomas Pfister. 2021. Learning to Prompt for Continual Learning. arXiv preprint arXiv:2112.08654 (2021)."},{"key":"e_1_3_2_2_48_1","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v35i4.16420"},{"key":"e_1_3_2_2_49_1","volume-title":"Proceedings of the Asian Conference on Computer Vision.","author":"Yi Jihun","year":"2020","unstructured":"Jihun Yi and Sungroh Yoon . 2020 . Patch svdd: Patch-level svdd for anomaly detection and segmentation . In Proceedings of the Asian Conference on Computer Vision. Jihun Yi and Sungroh Yoon. 2020. Patch svdd: Patch-level svdd for anomaly detection and segmentation. In Proceedings of the Asian Conference on Computer Vision."},{"key":"e_1_3_2_2_50_1","volume-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition. 14183--14193","author":"Zaheer Muhammad Zaigham","year":"2020","unstructured":"Muhammad Zaigham Zaheer , Jin-ha Lee, Marcella Astrid , and Seung-Ik Lee . 2020 . Old is gold: Redefining the adversarially learned one-class classifier training paradigm . In Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition. 14183--14193 . Muhammad Zaigham Zaheer, Jin-ha Lee, Marcella Astrid, and Seung-Ik Lee. 2020. Old is gold: Redefining the adversarially learned one-class classifier training paradigm. In Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition. 14183--14193."},{"key":"e_1_3_2_2_51_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV48922.2021.00822"},{"key":"e_1_3_2_2_52_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2020.107706"},{"key":"e_1_3_2_2_53_1","volume-title":"International Conference on Machine Learning. PMLR, 3987--3995","author":"Zenke Friedemann","year":"2017","unstructured":"Friedemann Zenke , Ben Poole , and Surya Ganguli . 2017 . Continual learning through synaptic intelligence . In International Conference on Machine Learning. PMLR, 3987--3995 . Friedemann Zenke, Ben Poole, and Surya Ganguli. 2017. Continual learning through synaptic intelligence. In International Conference on Machine Learning. PMLR, 3987--3995."},{"key":"e_1_3_2_2_54_1","doi-asserted-by":"publisher","DOI":"10.1109\/WACV48630.2021.00257"},{"key":"e_1_3_2_2_55_1","volume-title":"mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412","author":"Zhang Hongyi","year":"2017","unstructured":"Hongyi Zhang , Moustapha Cisse , Yann N Dauphin , and David Lopez-Paz . 2017. mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 ( 2017 ). Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. 2017. mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)."}],"event":{"name":"MM '22: The 30th ACM International Conference on Multimedia","location":"Lisboa Portugal","acronym":"MM '22","sponsor":["SIGMM ACM Special Interest Group on Multimedia"]},"container-title":["Proceedings of the 30th ACM International Conference on Multimedia"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3503161.3548232","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,12]],"date-time":"2023-01-12T07:42:47Z","timestamp":1673509367000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3503161.3548232"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,10,10]]},"references-count":55,"alternative-id":["10.1145\/3503161.3548232","10.1145\/3503161"],"URL":"https:\/\/doi.org\/10.1145\/3503161.3548232","relation":{},"subject":[],"published":{"date-parts":[[2022,10,10]]},"assertion":[{"value":"2022-10-10","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}