{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T19:56:13Z","timestamp":1725911773984},"reference-count":39,"publisher":"Association for Computing Machinery (ACM)","issue":"2","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":["Proc. ACM Interact. Mob. Wearable Ubiquitous Technol."],"published-print":{"date-parts":[[2021,6,23]]},"abstract":"Early detection and accurate burden estimation of atrial fibrillation (AFib) can provide the foundation for effective physician treatment. New approaches to accomplish this have attracted tremendous attention in recent years. In this paper, we develop a novel passive smartwatch-based system to detect AFib episodes and estimate the AFib burden in an ambulatory free-living environment without user engagement. Our system leverages a built-in PPG sensor to collect heart rhythm without user engagement. Then, a data preprocessor module includes time-frequency (TF) analysis to augment features in both the time and frequency domain. Finally, a lightweight multi-view convolutional neural network consisting of 19 layers achieves the AFib detection. To validate our system, we carry out a research study that enrolls 53 participants across three months, where we collect and annotate more than 27,622 hours of data. Our system achieves an average of 91.6% accuracy, 93.0% specificity, and 90.8% sensitivity without dropping any data. Moreover, our system takes 0.51 million parameters and costs 5.18 ms per inference. These results reveal that our proposed system can provide a clinical assessment of AFib in daily living.<\/jats:p>","DOI":"10.1145\/3463503","type":"journal-article","created":{"date-parts":[[2021,6,24]],"date-time":"2021-06-24T16:29:19Z","timestamp":1624552159000},"page":"1-19","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":3,"title":["Towards Early Detection and Burden Estimation of Atrial Fibrillation in an Ambulatory Free-living Environment"],"prefix":"10.1145","volume":"5","author":[{"given":"Hanbin","family":"Zhang","sequence":"first","affiliation":[{"name":"Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY, USA"}]},{"given":"Li","family":"Zhu","sequence":"additional","affiliation":[{"name":"Digital Health Lab, Samsung Research America, Mountain View, CA, USA"}]},{"given":"Viswam","family":"Nathan","sequence":"additional","affiliation":[{"name":"Digital Health Lab, Samsung Research America, Mountain View, CA, USA"}]},{"given":"Jilong","family":"Kuang","sequence":"additional","affiliation":[{"name":"Digital Health Lab, Samsung Research America, Mountain View, CA, USA"}]},{"given":"Jacob","family":"Kim","sequence":"additional","affiliation":[{"name":"Digital Health Lab, Samsung Research America, Mountain View, CA, USA"}]},{"given":"Jun Alex","family":"Gao","sequence":"additional","affiliation":[{"name":"Digital Health Lab, Samsung Research America, Mountain View, CA, USA"}]},{"given":"Jeffrey","family":"Olgin","sequence":"additional","affiliation":[{"name":"Division of Cardiology, Deparment of Medicine, University of California San Francisco, San Francisco, CA, USA"}]}],"member":"320","published-online":{"date-parts":[[2021,6,24]]},"reference":[{"key":"e_1_2_1_1_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.amjcard.2013.05.063"},{"key":"e_1_2_1_2_1","doi-asserted-by":"publisher","DOI":"10.1161\/CIRCEP.108.824789"},{"key":"e_1_2_1_3_1","volume-title":"Mobile phone-based use of the photoplethysmography technique to detect atrial fibrillation in primary care: Diagnostic accuracy study of the fibricheck app,\" JMJR mHealth and uHealth","author":"Proesmans T.","unstructured":"T. Proesmans , C. Mortelmans , R. Van Haelst , F. Verbrugge , P. Vandervoort , and B. Vaes , \" Mobile phone-based use of the photoplethysmography technique to detect atrial fibrillation in primary care: Diagnostic accuracy study of the fibricheck app,\" JMJR mHealth and uHealth , vol. 7 , no. 3, p. e12284, 2019. T. Proesmans, C. Mortelmans, R. Van Haelst, F. Verbrugge, P. Vandervoort, and B. Vaes, \"Mobile phone-based use of the photoplethysmography technique to detect atrial fibrillation in primary care: Diagnostic accuracy study of the fibricheck app,\" JMJR mHealth and uHealth, vol. 7, no. 3, p. e12284, 2019."},{"key":"e_1_2_1_4_1","doi-asserted-by":"publisher","DOI":"10.1056\/NEJMoa1901183"},{"key":"e_1_2_1_5_1","doi-asserted-by":"publisher","DOI":"10.1109\/TBME.2012.2208112"},{"key":"e_1_2_1_6_1","doi-asserted-by":"publisher","DOI":"10.1378\/chest.09-1584"},{"key":"e_1_2_1_7_1","doi-asserted-by":"publisher","DOI":"10.1093\/eurheartj\/ehw210"},{"key":"e_1_2_1_8_1","doi-asserted-by":"publisher","DOI":"10.1038\/nrcardio.2016.117"},{"key":"e_1_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.1161\/01.STR.32.1.280"},{"key":"e_1_2_1_10_1","first-page":"420","article-title":"Pulse oximeter waveform: photoelectric plethysmography","author":"Shelley K.","year":"2001","unstructured":"K. Shelley , S. Shelley , and C. Lake , \" Pulse oximeter waveform: photoelectric plethysmography ,\" Clinical monitoring , pp. 420 -- 428 , 2001 . K. Shelley, S. Shelley, and C. Lake, \"Pulse oximeter waveform: photoelectric plethysmography,\" Clinical monitoring, pp. 420--428, 2001.","journal-title":"Clinical monitoring"},{"key":"e_1_2_1_11_1","doi-asserted-by":"publisher","DOI":"10.1038\/s41746-019-0207-9"},{"key":"e_1_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1038\/srep45644"},{"key":"e_1_2_1_13_1","first-page":"1","article-title":"The accuracy of atrial fibrillation detection from wrist photoplethysmography. a study on post-operative patients\" in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)","author":"Tarniceriu A.","year":"2018","unstructured":"A. Tarniceriu , J. Harju , Z. R. Yousefi , A. Vehkaoja , J. Parak , A. Yli-Hankala , and I. Korhonen , \" The accuracy of atrial fibrillation detection from wrist photoplethysmography. a study on post-operative patients\" in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) . IEEE , 2018 , pp. 1 -- 4 . A. Tarniceriu, J. Harju, Z. R. Yousefi, A. Vehkaoja, J. Parak, A. Yli-Hankala, and I. Korhonen, \"The accuracy of atrial fibrillation detection from wrist photoplethysmography. a study on post-operative patients\" in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2018, pp. 1--4.","journal-title":"IEEE"},{"key":"e_1_2_1_14_1","first-page":"277","volume-title":"IEEE","author":"Bonomi A. G.","year":"2016","unstructured":"A. G. Bonomi , F. Schipper , L. M. Eerik\u00e4inen , J. Margarito , R. M. Aarts , S. Babaeizadeh , H. M. de Morree , and L. Dekker , \" Atrial fibrillation detection using photo-plethysmography and acceleration data at the wrist,\" in 2016 Computing in Cardiology Conference (CinC) . IEEE , 2016 , pp. 277 -- 280 . A. G. Bonomi, F. Schipper, L. M. Eerik\u00e4inen, J. Margarito, R. M. Aarts, S. Babaeizadeh, H. M. de Morree, and L. Dekker, \"Atrial fibrillation detection using photo-plethysmography and acceleration data at the wrist,\" in 2016 Computing in Cardiology Conference (CinC). IEEE, 2016, pp. 277--280."},{"key":"e_1_2_1_15_1","first-page":"141","volume-title":"IEEE","author":"Shashikumar S. P.","year":"2017","unstructured":"S. P. Shashikumar , A.J. Shah , Q. Li , G. D. Clifford , and S. Nemati , \" A deep learning approach to monitoring and detecting atrial fibrillation using wearable technology\" in 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI) . IEEE , 2017 , pp. 141 -- 144 . S. P. Shashikumar, A.J. Shah, Q. Li, G. D. Clifford, and S. Nemati, \"A deep learning approach to monitoring and detecting atrial fibrillation using wearable technology\" in 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). IEEE, 2017, pp. 141--144."},{"key":"e_1_2_1_16_1","first-page":"3394","volume-title":"IEEE","author":"Nemati S.","year":"2016","unstructured":"S. Nemati , M. M. Ghassemi , V. Ambai , N. Isakadze , O. Levantsevych , A. Shah , and G. D. Clifford , \" Monitoring and detecting atrial fibrillation using wearable technology,\" in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) . IEEE , 2016 , pp. 3394 -- 3397 . S. Nemati, M. M. Ghassemi, V. Ambai, N. Isakadze, O. Levantsevych, A. Shah, and G. D. Clifford, \"Monitoring and detecting atrial fibrillation using wearable technology,\" in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2016, pp. 3394--3397."},{"key":"e_1_2_1_17_1","volume-title":"An automatic method for arterial pulse waveform recognition using knn and svm classifiers,\" Medical & biological engineering & computing","author":"Pereira T.","unstructured":"T. Pereira , J. S. Paiva , C. Correia , and J. Cardoso , \" An automatic method for arterial pulse waveform recognition using knn and svm classifiers,\" Medical & biological engineering & computing , vol. 54 , no. 7, pp. 1049--1059, 2016. T. Pereira, J. S. Paiva, C. Correia, and J. Cardoso, \"An automatic method for arterial pulse waveform recognition using knn and svm classifiers,\" Medical & biological engineering & computing, vol. 54, no. 7, pp. 1049--1059, 2016."},{"key":"e_1_2_1_18_1","first-page":"30","volume-title":"Supervised learning methods for pathological arterial pulse wave differentiation: a svm and neural networks approach,\" International journal ofmedical informatics","author":"Paiva J. S.","year":"2018","unstructured":"J. S. Paiva , J. Cardoso , and T. Pereira , \" Supervised learning methods for pathological arterial pulse wave differentiation: a svm and neural networks approach,\" International journal ofmedical informatics , vol. 109 , pp. 30 -- 38 , 2018 . J. S. Paiva, J. Cardoso, and T. Pereira, \"Supervised learning methods for pathological arterial pulse wave differentiation: a svm and neural networks approach,\" International journal ofmedical informatics, vol. 109, pp. 30--38, 2018."},{"key":"e_1_2_1_19_1","doi-asserted-by":"publisher","DOI":"10.1109\/JBHI.2019.2909065"},{"key":"e_1_2_1_20_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11517-018-1886-0"},{"key":"e_1_2_1_21_1","volume-title":"Motion and noise artifact-resilient atrial fibrillation detection using a smartphone\" IEEE journal on emerging and selected topics in circuits and systems","author":"Chong J. W.","unstructured":"J. W. Chong , C. H. Cho , F. Tabei , D. Le-Anh , N. Esa , D. D. Mcmanus , and K. H. Chon , \" Motion and noise artifact-resilient atrial fibrillation detection using a smartphone\" IEEE journal on emerging and selected topics in circuits and systems , vol. 8 , no. 2, pp. 230--239, 2018. J. W. Chong, C. H. Cho, F. Tabei, D. Le-Anh, N. Esa, D. D. Mcmanus, and K. H. Chon, \"Motion and noise artifact-resilient atrial fibrillation detection using a smartphone\" IEEE journal on emerging and selected topics in circuits and systems, vol. 8, no. 2, pp. 230--239, 2018."},{"key":"e_1_2_1_22_1","first-page":"1909","volume-title":"Ambulatory atrial fibrillation monitoring using wearable photoplethysmography with deep learning,\" in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","author":"Shen Y.","year":"2019","unstructured":"Y. Shen , M. Voisin , A. Aliamiri , A. Avati , A. Hannun , and A. Ng , \" Ambulatory atrial fibrillation monitoring using wearable photoplethysmography with deep learning,\" in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining , 2019 , pp. 1909 -- 1916 . Y. Shen, M. Voisin, A. Aliamiri, A. Avati, A. Hannun, and A. Ng, \"Ambulatory atrial fibrillation monitoring using wearable photoplethysmography with deep learning,\" in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 1909--1916."},{"key":"e_1_2_1_23_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ahj.2018.09.002"},{"key":"e_1_2_1_24_1","article-title":"Mobile health technology for atrial fibrillation screening using photoplethysmography-based smart devices: The huawei heart study","author":"Guo Y.","year":"2019","unstructured":"Y. Guo , H. Wang , H. Zhang , T. Liu , Z. Liang , Y. Xia , L. Yan , Y. Xing , H. Shi , S. Li ., \" Mobile health technology for atrial fibrillation screening using photoplethysmography-based smart devices: The huawei heart study \" Journal of the American College of Cardiology , 2019 . Y. Guo, H. Wang, H. Zhang, T. Liu, Z. Liang, Y. Xia, L. Yan, Y. Xing, H. Shi, S. Li et al., \"Mobile health technology for atrial fibrillation screening using photoplethysmography-based smart devices: The huawei heart study\" Journal of the American College of Cardiology, 2019.","journal-title":"Journal of the American College of Cardiology"},{"key":"e_1_2_1_25_1","volume-title":"Time-frequency analysis. Prentice hall","year":"1995","unstructured":"L.Cohen , Time-frequency analysis. Prentice hall , 1995 , vol. 778 . L.Cohen, Time-frequency analysis. Prentice hall, 1995, vol. 778."},{"key":"e_1_2_1_26_1","doi-asserted-by":"publisher","DOI":"10.1109\/TSP.2008.924856"},{"key":"e_1_2_1_27_1","volume-title":"The instantaneous frequency of cardiovascular time series: a comparison of methods,\" Computer methods and programs in biomedicine","author":"van Steenis H.","unstructured":"H. van Steenis , W. Martens , and J. Tulen , \" The instantaneous frequency of cardiovascular time series: a comparison of methods,\" Computer methods and programs in biomedicine , vol. 71 , no. 3, pp. 211--224, 2003. H. van Steenis, W. Martens, and J. Tulen, \"The instantaneous frequency of cardiovascular time series: a comparison of methods,\" Computer methods and programs in biomedicine, vol. 71, no. 3, pp. 211--224, 2003."},{"key":"e_1_2_1_28_1","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He K.","year":"2016","unstructured":"K. He , X. Zhang , S. Ren , and J. Sun , \" Deep residual learning for image recognition ,\" in Proceedings of the IEEE conference on computer vision and pattern recognition , 2016 , pp. 770 -- 778 . K. He, X. Zhang, S. Ren, and J. Sun, \"Deep residual learning for image recognition,\" in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770--778.","journal-title":"Proceedings of the IEEE conference on computer vision and pattern recognition"},{"key":"e_1_2_1_29_1","volume-title":"Mobilenets: Efficient convolutional neural networks for mobile vision applications,\" arXiv preprint arXiv:1704.04861","author":"Howard A. G.","year":"2017","unstructured":"A. G. Howard , M. Zhu , B. Chen , D. Kalenichenko , W. Wang , T. Weyand , M. Andreetto , and H. Adam , \" Mobilenets: Efficient convolutional neural networks for mobile vision applications,\" arXiv preprint arXiv:1704.04861 , 2017 . A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, \"Mobilenets: Efficient convolutional neural networks for mobile vision applications,\" arXiv preprint arXiv:1704.04861, 2017."},{"key":"e_1_2_1_30_1","first-page":"248","volume-title":"CVPR 2009. IEEE Conference on. Ieee","author":"Deng J.","year":"2009","unstructured":"J. Deng , W. Dong , R. Socher , L.-J. Li , K. Li , and L. Fei-Fei , \" Imagenet: A large-scale hierarchical image database,\" in Computer Vision and Pattern Recognition, 2009 . CVPR 2009. IEEE Conference on. Ieee , 2009 , pp. 248 -- 255 . J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, \"Imagenet: A large-scale hierarchical image database,\" in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. Ieee, 2009, pp. 248--255."},{"key":"e_1_2_1_31_1","volume-title":"Sgdr: Stochastic gradient descent with warm restarts,\" arXiv preprint arXiv:1608.03983","author":"Loshchilov I.","year":"2016","unstructured":"I. Loshchilov and F. Hutter , \" Sgdr: Stochastic gradient descent with warm restarts,\" arXiv preprint arXiv:1608.03983 , 2016 . I. Loshchilov and F. Hutter, \"Sgdr: Stochastic gradient descent with warm restarts,\" arXiv preprint arXiv:1608.03983, 2016."},{"key":"e_1_2_1_32_1","unstructured":"\"A new lightweight modular and scalable deep learning framework \" https:\/\/research.fb.com\/downloads\/caffe2\/ accessed 07\/29\/19. \"A new lightweight modular and scalable deep learning framework \" https:\/\/research.fb.com\/downloads\/caffe2\/ accessed 07\/29\/19."},{"key":"e_1_2_1_33_1","unstructured":"\"Protocol buffers \" https:\/\/developers.google.com\/protocol-buffers\/ accessed 08\/06\/19. \"Protocol buffers \" https:\/\/developers.google.com\/protocol-buffers\/ accessed 08\/06\/19."},{"key":"e_1_2_1_34_1","unstructured":"\"Transfering a model from pytorch to caffe2 and mobile using onnx \" https:\/\/pytorch.org\/tutorials\/advanced\/super_resolution_with_caffe2.html accessed 08\/06\/19. \"Transfering a model from pytorch to caffe2 and mobile using onnx \" https:\/\/pytorch.org\/tutorials\/advanced\/super_resolution_with_caffe2.html accessed 08\/06\/19."},{"key":"e_1_2_1_35_1","unstructured":"\"Transfering a model from pytorch to caffe2 and mobile using onnx \" https:\/\/github.com\/pytorch\/pytorch\/blob\/master\/binaries\/speed_benchmark.cc accessed 07\/25\/19. \"Transfering a model from pytorch to caffe2 and mobile using onnx \" https:\/\/github.com\/pytorch\/pytorch\/blob\/master\/binaries\/speed_benchmark.cc accessed 07\/25\/19."},{"key":"e_1_2_1_36_1","doi-asserted-by":"publisher","DOI":"10.1145\/3081333.3081351"},{"key":"e_1_2_1_37_1","first-page":"1","volume-title":"Block-sparse compressive sensing for high-fidelity recording of photoplethysmogram,\" in 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS)","author":"Zamani H.","year":"2018","unstructured":"H. Zamani , F. Marefat , and P. Mohseni , \" Block-sparse compressive sensing for high-fidelity recording of photoplethysmogram,\" in 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS) , 2018 , pp. 1 -- 4 . H. Zamani, F. Marefat, and P. Mohseni, \"Block-sparse compressive sensing for high-fidelity recording of photoplethysmogram,\" in 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), 2018, pp. 1--4."},{"key":"e_1_2_1_38_1","doi-asserted-by":"publisher","DOI":"10.3390\/jpm7020003"},{"key":"e_1_2_1_39_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10877-013-9436-7"}],"container-title":["Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3463503","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T22:04:48Z","timestamp":1672610688000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3463503"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6,23]]},"references-count":39,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2021,6,23]]}},"alternative-id":["10.1145\/3463503"],"URL":"https:\/\/doi.org\/10.1145\/3463503","relation":{},"ISSN":["2474-9567"],"issn-type":[{"value":"2474-9567","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,6,23]]},"assertion":[{"value":"2021-06-24","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}