{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T21:36:17Z","timestamp":1730324177800,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":80,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2021,7,21]]},"DOI":"10.1145\/3461702.3462599","type":"proceedings-article","created":{"date-parts":[[2021,7,31]],"date-time":"2021-07-31T01:21:38Z","timestamp":1627694498000},"page":"664-673","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":5,"title":["Becoming Good at AI for Good"],"prefix":"10.1145","author":[{"given":"Meghana","family":"Kshirsagar","sequence":"first","affiliation":[{"name":"Microsoft AI for Good, Redmond, WA, USA"}]},{"given":"Caleb","family":"Robinson","sequence":"additional","affiliation":[{"name":"Microsoft AI for Good, Redmond, WA, USA"}]},{"given":"Siyu","family":"Yang","sequence":"additional","affiliation":[{"name":"Microsoft AI for Good, Redmond, WA, USA"}]},{"given":"Shahrzad","family":"Gholami","sequence":"additional","affiliation":[{"name":"Microsoft AI for Good, Redmond, WA, USA"}]},{"given":"Ivan","family":"Klyuzhin","sequence":"additional","affiliation":[{"name":"Microsoft AI for Good, Redmond, WA, USA"}]},{"given":"Sumit","family":"Mukherjee","sequence":"additional","affiliation":[{"name":"Microsoft AI for Good, Redmond, WA, USA"}]},{"given":"Md","family":"Nasir","sequence":"additional","affiliation":[{"name":"Microsoft AI for Good, Redmond, WA, USA"}]},{"given":"Anthony","family":"Ortiz","sequence":"additional","affiliation":[{"name":"Microsoft AI for Good, Redmond, WA, USA"}]},{"given":"Felipe","family":"Oviedo","sequence":"additional","affiliation":[{"name":"Microsoft AI for Good, Redmond, WA, USA"}]},{"given":"Darren","family":"Tanner","sequence":"additional","affiliation":[{"name":"Microsoft AI for Good, Redmond, WA, USA"}]},{"given":"Anusua","family":"Trivedi","sequence":"additional","affiliation":[{"name":"Microsoft AI for Good, Redmond, WA, USA"}]},{"given":"Yixi","family":"Xu","sequence":"additional","affiliation":[{"name":"Microsoft AI for Good, Redmond, WA, USA"}]},{"given":"Ming","family":"Zhong","sequence":"additional","affiliation":[{"name":"Microsoft AI for Good, Redmond, WA, USA"}]},{"given":"Bistra","family":"Dilkina","sequence":"additional","affiliation":[{"name":"University of Southern California, Los Angeles, CA, USA"}]},{"given":"Rahul","family":"Dodhia","sequence":"additional","affiliation":[{"name":"Microsoft AI for Good, Redmond, WA, USA"}]},{"given":"Juan M.","family":"Lavista Ferres","sequence":"additional","affiliation":[{"name":"Microsoft AI for Good, Redmond, WA, USA"}]}],"member":"320","published-online":{"date-parts":[[2021,7,30]]},"reference":[{"key":"e_1_3_2_1_1_1","doi-asserted-by":"publisher","DOI":"10.1001\/jama.292.22.2771"},{"volume-title":"AI Emerges as Crucial Tool for Groups Seeking Justice for Syria War Crimes. The Wall Street Journal","year":"2021","author":"Abdulrahim Raja","key":"e_1_3_2_1_2_1","unstructured":"Raja Abdulrahim . 2021. AI Emerges as Crucial Tool for Groups Seeking Justice for Syria War Crimes. The Wall Street Journal ( 2021 ). https:\/\/www.wsj.com\/articles\/ai-emerges-as-crucial-tool-for-groups-seeking-justice-for-syria-war-crimes-11613228401 Raja Abdulrahim. 2021. AI Emerges as Crucial Tool for Groups Seeking Justice for Syria War Crimes. The Wall Street Journal (2021). https:\/\/www.wsj.com\/articles\/ai-emerges-as-crucial-tool-for-groups-seeking-justice-for-syria-war-crimes-11613228401"},{"key":"e_1_3_2_1_3_1","doi-asserted-by":"publisher","DOI":"10.1017\/S0376892919000298"},{"key":"e_1_3_2_1_4_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ejmp.2017.05.071"},{"key":"e_1_3_2_1_5_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.visres.2020.04.003"},{"volume-title":"Subject-centered free-response ROC (FROC) analysis. Medical physics","year":"2013","author":"Bandos Andriy I","key":"e_1_3_2_1_6_1","unstructured":"Andriy I Bandos , Howard E Rockette , and David Gur . 2013. Subject-centered free-response ROC (FROC) analysis. Medical physics , Vol. 40 , 5 ( 2013 ), 051706. Andriy I Bandos, Howard E Rockette, and David Gur. 2013. Subject-centered free-response ROC (FROC) analysis. Medical physics, Vol. 40, 5 (2013), 051706."},{"volume-title":"Mir Matin, and Yoshua Bengio.","year":"2020","author":"Baraka Shimaa","key":"e_1_3_2_1_7_1","unstructured":"Shimaa Baraka , Benjamin Akera , Bibek Aryal , Tenzing Sherpa , Finu Shresta , Anthony Ortiz , Kris Sankaran , Juan Lavista Ferres , Mir Matin, and Yoshua Bengio. 2020 . Machine Learning for Glacier Monitoring in the Hindu Kush Himalaya . arXiv preprint arXiv:2012.05013 (2020). Shimaa Baraka, Benjamin Akera, Bibek Aryal, Tenzing Sherpa, Finu Shresta, Anthony Ortiz, Kris Sankaran, Juan Lavista Ferres, Mir Matin, and Yoshua Bengio. 2020. Machine Learning for Glacier Monitoring in the Hindu Kush Himalaya. arXiv preprint arXiv:2012.05013 (2020)."},{"key":"e_1_3_2_1_8_1","doi-asserted-by":"publisher","DOI":"10.1109\/WACV45572.2020.9093570"},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01270-0_28"},{"key":"e_1_3_2_1_10_1","doi-asserted-by":"publisher","DOI":"10.1515\/pjbr-2019-0004"},{"volume-title":"The Human Factor of Cybercrime, Rutger Leukfeldt and Thomas J","author":"Broadhurst Roderic","key":"e_1_3_2_1_11_1","unstructured":"Roderic Broadhurst . 2020. Child sex abuse images and exploitation materials . In The Human Factor of Cybercrime, Rutger Leukfeldt and Thomas J . Holt (Eds.). Routledge , 310--336. Roderic Broadhurst. 2020. Child sex abuse images and exploitation materials. In The Human Factor of Cybercrime, Rutger Leukfeldt and Thomas J. Holt (Eds.). Routledge, 310--336."},{"volume-title":"Predicting burned areas of forest fires: an artificial intelligence approach. Fire ecology","year":"2015","author":"Castelli Mauro","key":"e_1_3_2_1_12_1","unstructured":"Mauro Castelli , Leonardo Vanneschi , and Alevs Popovivc . 2015. Predicting burned areas of forest fires: an artificial intelligence approach. Fire ecology , Vol. 11 , 1 ( 2015 ), 106--118. Mauro Castelli, Leonardo Vanneschi, and Alevs Popovivc. 2015. Predicting burned areas of forest fires: an artificial intelligence approach. Fire ecology, Vol. 11, 1 (2015), 106--118."},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"crossref","unstructured":"Lowik Chanussot Abhishek Das Siddharth Goyal Thibaut Lavril Muhammed Shuaibi Morgane Riviere Kevin Tran Javier Heras-Domingo Caleb Ho Weihua Hu etal 2020. The Open Catalyst 2020 (OC20) Dataset and Community Challenges. arXiv preprint arXiv:2010.09990 (2020). Lowik Chanussot Abhishek Das Siddharth Goyal Thibaut Lavril Muhammed Shuaibi Morgane Riviere Kevin Tran Javier Heras-Domingo Caleb Ho Weihua Hu et al. 2020. The Open Catalyst 2020 (OC20) Dataset and Community Challenges. arXiv preprint arXiv:2010.09990 (2020).","DOI":"10.1021\/acscatal.0c04525"},{"key":"e_1_3_2_1_14_1","doi-asserted-by":"publisher","DOI":"10.1145\/3185515"},{"key":"e_1_3_2_1_15_1","first-page":"97","article-title":"What AI can and can't do (yet) for your business","volume":"1","author":"Chui Michael","year":"2018","unstructured":"Michael Chui , James Manyika , and Mehdi Miremadi . 2018 . What AI can and can't do (yet) for your business . McKinsey Quarterly , Vol. 1 (2018), 97 -- 108 . Michael Chui, James Manyika, and Mehdi Miremadi. 2018. What AI can and can't do (yet) for your business. McKinsey Quarterly, Vol. 1 (2018), 97--108.","journal-title":"McKinsey Quarterly"},{"key":"e_1_3_2_1_16_1","unstructured":"Jim Collins. 2019. Turning the flywheel: a monograph to accompany good to great Random House. Jim Collins. 2019. Turning the flywheel: a monograph to accompany good to great .Random House."},{"volume-title":"Designing AI for social good: Seven essential factors. SSRN 3388669","year":"2019","author":"Cowls Josh","key":"e_1_3_2_1_17_1","unstructured":"Josh Cowls , Thomas King , Mariarosaria Taddeo , and Luciano Floridi . 2019. Designing AI for social good: Seven essential factors. SSRN 3388669 ( 2019 ). Josh Cowls, Thomas King, Mariarosaria Taddeo, and Luciano Floridi. 2019. Designing AI for social good: Seven essential factors. SSRN 3388669 (2019)."},{"key":"e_1_3_2_1_18_1","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v30i2.19070"},{"volume-title":"Artificial intelligence and conservation","author":"Fang Fei","key":"e_1_3_2_1_19_1","unstructured":"Fei Fang , Milind Tambe , Bistra Dilkina , and Andrew J Plumptre . 2019. Artificial intelligence and conservation . Cambridge University Press . Fei Fang, Milind Tambe, Bistra Dilkina, and Andrew J Plumptre. 2019. Artificial intelligence and conservation .Cambridge University Press."},{"volume-title":"Data preprocessing in data mining","author":"Garc'ia Salvador","key":"e_1_3_2_1_20_1","unstructured":"Salvador Garc'ia , Juli\u00e1n Luengo , and Francisco Herrera . 2015. Data preprocessing in data mining . Springer . Salvador Garc'ia, Juli\u00e1n Luengo, and Francisco Herrera. 2015. Data preprocessing in data mining .Springer."},{"volume-title":"International Conference on Learning Representations .","year":"2019","author":"Geirhos Robert","key":"e_1_3_2_1_21_1","unstructured":"Robert Geirhos , Patricia Rubisch , Claudio Michaelis , Matthias Bethge , Felix A. Wichmann , and Wieland Brendel . 2019 . ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness . In International Conference on Learning Representations . Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wichmann, and Wieland Brendel. 2019. ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. In International Conference on Learning Representations ."},{"volume-title":"Annual Conference on Innovative Applications of Artificial Intelligence (IAAI) .","author":"Gholami Shahrzad","key":"e_1_3_2_1_22_1","unstructured":"Shahrzad Gholami , Narendran Kodandapani , Jane Wang , and Juan M . Lavista Ferres. 2021. Where there's Smoke, there's Fire: Wildfire Risk Predictive Modeling via Historical Climate Data . In Annual Conference on Innovative Applications of Artificial Intelligence (IAAI) . Shahrzad Gholami, Narendran Kodandapani, Jane Wang, and Juan M. Lavista Ferres. 2021. Where there's Smoke, there's Fire: Wildfire Risk Predictive Modeling via Historical Climate Data. In Annual Conference on Innovative Applications of Artificial Intelligence (IAAI) ."},{"volume-title":"Bistra Dilkina, Andrew J Plumptre, Milind Tambe, Margaret Driciru, Fred Wanyama, Aggrey Rwetsiba, Mustapha Nsubaga, Joshua Mabonga, et al.","year":"2018","author":"Gholami Shahrzad","key":"e_1_3_2_1_23_1","unstructured":"Shahrzad Gholami , Sara Mc Carthy , Bistra Dilkina, Andrew J Plumptre, Milind Tambe, Margaret Driciru, Fred Wanyama, Aggrey Rwetsiba, Mustapha Nsubaga, Joshua Mabonga, et al. 2018 . Adversary Models Account for Imperfect Crime Data: Forecasting and Planning against Real-world Poachers. In AAMAS. 823--831. Shahrzad Gholami, Sara Mc Carthy, Bistra Dilkina, Andrew J Plumptre, Milind Tambe, Margaret Driciru, Fred Wanyama, Aggrey Rwetsiba, Mustapha Nsubaga, Joshua Mabonga, et al. 2018. Adversary Models Account for Imperfect Crime Data: Forecasting and Planning against Real-world Poachers. In AAMAS. 823--831."},{"key":"e_1_3_2_1_24_1","doi-asserted-by":"publisher","DOI":"10.1145\/3339399"},{"volume-title":"Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote sensing of Environment","year":"2017","author":"Gorelick Noel","key":"e_1_3_2_1_25_1","unstructured":"Noel Gorelick , Matt Hancher , Mike Dixon , Simon Ilyushchenko , David Thau , and Rebecca Moore . 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote sensing of Environment , Vol. 202 ( 2017 ), 18--27. Noel Gorelick, Matt Hancher, Mike Dixon, Simon Ilyushchenko, David Thau, and Rebecca Moore. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote sensing of Environment, Vol. 202 (2017), 18--27."},{"volume-title":"Proceedings of the AI for Social Good workshop at NeurIPS .","year":"2019","author":"Green Ben","key":"e_1_3_2_1_26_1","unstructured":"Ben Green . 2019 . \" Good\" isn't good enough . In Proceedings of the AI for Social Good workshop at NeurIPS . Ben Green. 2019. \"Good\" isn't good enough. In Proceedings of the AI for Social Good workshop at NeurIPS ."},{"volume-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops .","year":"2019","author":"Gupta Ritwik","key":"e_1_3_2_1_28_1","unstructured":"Ritwik Gupta , Bryce Goodman , Nirav Patel , Ricky Hosfelt , Sandra Sajeev , Eric Heim , Jigar Doshi , Keane Lucas , Howie Choset , and Matthew Gaston . 2019 . Creating xBD: A Dataset for Assessing Building Damage from Satellite Imagery . In Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops . Ritwik Gupta, Bryce Goodman, Nirav Patel, Ricky Hosfelt, Sandra Sajeev, Eric Heim, Jigar Doshi, Keane Lucas, Howie Choset, and Matthew Gaston. 2019. Creating xBD: A Dataset for Assessing Building Damage from Satellite Imagery. In Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops ."},{"volume-title":"An Attention-Based System for Damage Assessment Using Satellite Imagery. arXiv preprint arXiv:2004.06643","year":"2020","author":"Hao Hanxiang","key":"e_1_3_2_1_29_1","unstructured":"Hanxiang Hao , Sriram Baireddy , Emily R Bartusiak , Latisha Konz , Kevin LaTourette , Michael Gribbons , Moses Chan , Mary L Comer , and Edward J Delp . 2020. An Attention-Based System for Damage Assessment Using Satellite Imagery. arXiv preprint arXiv:2004.06643 ( 2020 ). Hanxiang Hao, Sriram Baireddy, Emily R Bartusiak, Latisha Konz, Kevin LaTourette, Michael Gribbons, Moses Chan, Mary L Comer, and Edward J Delp. 2020. An Attention-Based System for Damage Assessment Using Satellite Imagery. arXiv preprint arXiv:2004.06643 (2020)."},{"key":"e_1_3_2_1_30_1","doi-asserted-by":"publisher","DOI":"10.2478\/popets-2019-0008"},{"key":"e_1_3_2_1_31_1","doi-asserted-by":"publisher","DOI":"10.1145\/3313831.3376177"},{"volume-title":"Climate Action: All Eyes on India. https:\/\/www.nrdc.org\/experts\/anjali-jaiswal\/climate-action-all-eyes-india","year":"2020","author":"Jaiswal Anjali","key":"e_1_3_2_1_32_1","unstructured":"Anjali Jaiswal and Madhura Joshi . 2020 . Climate Action: All Eyes on India. https:\/\/www.nrdc.org\/experts\/anjali-jaiswal\/climate-action-all-eyes-india Anjali Jaiswal and Madhura Joshi. 2020. Climate Action: All Eyes on India. https:\/\/www.nrdc.org\/experts\/anjali-jaiswal\/climate-action-all-eyes-india"},{"volume-title":"Revisiting Membership Inference Under Realistic Assumptions. arXiv preprint arXiv:2005.10881","year":"2020","author":"Jayaraman Bargav","key":"e_1_3_2_1_33_1","unstructured":"Bargav Jayaraman , Lingxiao Wang , David Evans , and Quanquan Gu. 2020. Revisiting Membership Inference Under Realistic Assumptions. arXiv preprint arXiv:2005.10881 ( 2020 ). Bargav Jayaraman, Lingxiao Wang, David Evans, and Quanquan Gu. 2020. Revisiting Membership Inference Under Realistic Assumptions. arXiv preprint arXiv:2005.10881 (2020)."},{"key":"e_1_3_2_1_34_1","doi-asserted-by":"publisher","DOI":"10.1126\/science.aaf7894"},{"volume-title":"Quantifying the Carbon Emissions of Machine Learning. arXiv preprint arXiv:1910.09700","year":"2019","author":"Lacoste Alexandre","key":"e_1_3_2_1_35_1","unstructured":"Alexandre Lacoste , Alexandra Luccioni , Victor Schmidt , and Thomas Dandres . 2019. Quantifying the Carbon Emissions of Machine Learning. arXiv preprint arXiv:1910.09700 ( 2019 ). Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. 2019. Quantifying the Carbon Emissions of Machine Learning. arXiv preprint arXiv:1910.09700 (2019)."},{"key":"e_1_3_2_1_36_1","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0045985"},{"volume-title":"MACE: A Flexible Framework for Membership Privacy Estimation in Generative Models. arXiv preprint arXiv:2009.05683","year":"2020","author":"Liu Xiyang","key":"e_1_3_2_1_37_1","unstructured":"Xiyang Liu , Yixi Xu , Sumit Mukherjee , and Juan Lavista Ferres . 2020 . MACE: A Flexible Framework for Membership Privacy Estimation in Generative Models. arXiv preprint arXiv:2009.05683 (2020). Xiyang Liu, Yixi Xu, Sumit Mukherjee, and Juan Lavista Ferres. 2020. MACE: A Flexible Framework for Membership Privacy Estimation in Generative Models. arXiv preprint arXiv:2009.05683 (2020)."},{"volume-title":"An Epidemic of AI Misinformation. The Gradient","year":"2019","author":"Marcus Gary","key":"e_1_3_2_1_38_1","unstructured":"Gary Marcus . 2019. An Epidemic of AI Misinformation. The Gradient ( 2019 ). https:\/\/thegradient.pub\/an-epidemic-of-ai-misinformation\/ Gary Marcus. 2019. An Epidemic of AI Misinformation. The Gradient (2019). https:\/\/thegradient.pub\/an-epidemic-of-ai-misinformation\/"},{"volume-title":"Artificial intelligence in medical practice: the question to the answer? The American journal of medicine","year":"2018","author":"Douglas Miller D","key":"e_1_3_2_1_39_1","unstructured":"D Douglas Miller and Eric W Brown . 2018. Artificial intelligence in medical practice: the question to the answer? The American journal of medicine , Vol. 131 , 2 ( 2018 ), 129--133. D Douglas Miller and Eric W Brown. 2018. Artificial intelligence in medical practice: the question to the answer? The American journal of medicine, Vol. 131, 2 (2018), 129--133."},{"key":"e_1_3_2_1_40_1","doi-asserted-by":"publisher","DOI":"10.3389\/fdata.2019.00032"},{"volume-title":"Protecting GANs against privacy attacks by preventing overfitting. arXiv preprint arXiv:2001.00071","year":"2019","author":"Mukherjee Sumit","key":"e_1_3_2_1_41_1","unstructured":"Sumit Mukherjee , Yixi Xu , Anusua Trivedi , and Juan Lavista Ferres . 2019. Protecting GANs against privacy attacks by preventing overfitting. arXiv preprint arXiv:2001.00071 ( 2019 ). Sumit Mukherjee, Yixi Xu, Anusua Trivedi, and Juan Lavista Ferres. 2019. Protecting GANs against privacy attacks by preventing overfitting. arXiv preprint arXiv:2001.00071 (2019)."},{"key":"e_1_3_2_1_42_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICASSP.2015.7178298"},{"key":"e_1_3_2_1_43_1","doi-asserted-by":"crossref","unstructured":"Md Nasir Brian R Baucom Craig J Bryan Shrikanth S Narayanan and Panayiotis G Georgiou. 2017. Complexity in Speech and its Relation to Emotional Bond in Therapist-Patient Interactions During Suicide Risk Assessment Interviews.. In INTERSPEECH. 3296--3300. Md Nasir Brian R Baucom Craig J Bryan Shrikanth S Narayanan and Panayiotis G Georgiou. 2017. Complexity in Speech and its Relation to Emotional Bond in Therapist-Patient Interactions During Suicide Risk Assessment Interviews.. In INTERSPEECH. 3296--3300.","DOI":"10.21437\/Interspeech.2017-1641"},{"key":"e_1_3_2_1_44_1","doi-asserted-by":"publisher","DOI":"10.1073\/pnas.1719367115"},{"volume-title":"Kaicheng Zhang, Mariya Layurova, Thomas Heumueller, Ning Li, Erik Birgersson, Shijing Sun, et al.","year":"2020","author":"Oviedo Felipe","key":"e_1_3_2_1_45_1","unstructured":"Felipe Oviedo , Zekun Ren , Xue Hansong , Siyu Isaac Parker Tian , Kaicheng Zhang, Mariya Layurova, Thomas Heumueller, Ning Li, Erik Birgersson, Shijing Sun, et al. 2020 . Bridging the gap between photovoltaics R&D and manufacturing with data-driven optimization. arXiv preprint arXiv:2004.13599 (2020). Felipe Oviedo, Zekun Ren, Xue Hansong, Siyu Isaac Parker Tian, Kaicheng Zhang, Mariya Layurova, Thomas Heumueller, Ning Li, Erik Birgersson, Shijing Sun, et al. 2020. Bridging the gap between photovoltaics R&D and manufacturing with data-driven optimization. arXiv preprint arXiv:2004.13599 (2020)."},{"volume-title":"5 Trends Drive the Gartner Hype Cycle for Emerging Technologies","year":"2020","author":"Panetta Kasey","key":"e_1_3_2_1_46_1","unstructured":"Kasey Panetta . 2020. 5 Trends Drive the Gartner Hype Cycle for Emerging Technologies , 2020 . https:\/\/www.gartner.com\/smarterwithgartner\/5-trends-drive-the-gartner-hype-cycle-for-emerging-technologies-2020\/ Kasey Panetta. 2020. 5 Trends Drive the Gartner Hype Cycle for Emerging Technologies, 2020. https:\/\/www.gartner.com\/smarterwithgartner\/5-trends-drive-the-gartner-hype-cycle-for-emerging-technologies-2020\/"},{"key":"e_1_3_2_1_47_1","doi-asserted-by":"publisher","DOI":"10.1177\/0022343310378914"},{"key":"e_1_3_2_1_48_1","article-title":"Learning from crowds","volume":"11","author":"Raykar Vikas C","year":"2010","unstructured":"Vikas C Raykar , Shipeng Yu , Linda H Zhao , Gerardo Hermosillo Valadez , Charles Florin , Luca Bogoni , and Linda Moy . 2010 . Learning from crowds . Journal of Machine Learning Research , Vol. 11 , 4 (2010). Vikas C Raykar, Shipeng Yu, Linda H Zhao, Gerardo Hermosillo Valadez, Charles Florin, Luca Bogoni, and Linda Moy. 2010. Learning from crowds. Journal of Machine Learning Research, Vol. 11, 4 (2010).","journal-title":"Journal of Machine Learning Research"},{"volume-title":"Yue Wang, Hansong Xue, Jose Dario Perea, Mariya Layurova, Thomas Heumueller, Erik Birgersson, et al.","year":"2020","author":"Ren Zekun","key":"e_1_3_2_1_49_1","unstructured":"Zekun Ren , Felipe Oviedo , Maung Thway , Siyu IP Tian , Yue Wang, Hansong Xue, Jose Dario Perea, Mariya Layurova, Thomas Heumueller, Erik Birgersson, et al. 2020 . Embedding physics domain knowledge into a Bayesian network enables layer-by-layer process innovation for photovoltaics. npj Computational Materials , Vol. 6 , 1 (2020), 1--9. Zekun Ren, Felipe Oviedo, Maung Thway, Siyu IP Tian, Yue Wang, Hansong Xue, Jose Dario Perea, Mariya Layurova, Thomas Heumueller, Erik Birgersson, et al. 2020. Embedding physics domain knowledge into a Bayesian network enables layer-by-layer process innovation for photovoltaics. npj Computational Materials, Vol. 6, 1 (2020), 1--9."},{"key":"e_1_3_2_1_50_1","doi-asserted-by":"publisher","DOI":"10.1145\/3209811.3209868"},{"key":"e_1_3_2_1_51_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.01301"},{"volume-title":"2019 b. Human-Machine Collaboration for Fast Land Cover Mapping. arXiv preprint arXiv:1906.04176","year":"2019","author":"Robinson Caleb","key":"e_1_3_2_1_52_1","unstructured":"Caleb Robinson , Anthony Ortiz , Kolya Malkin , Blake Elias , Andi Peng , Dan Morris , Bistra Dilkina , and Nebojsa Jojic . 2019 b. Human-Machine Collaboration for Fast Land Cover Mapping. arXiv preprint arXiv:1906.04176 ( 2019 ). Caleb Robinson, Anthony Ortiz, Kolya Malkin, Blake Elias, Andi Peng, Dan Morris, Bistra Dilkina, and Nebojsa Jojic. 2019 b. Human-Machine Collaboration for Fast Land Cover Mapping. arXiv preprint arXiv:1906.04176 (2019)."},{"key":"e_1_3_2_1_53_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.envsoft.2014.03.003"},{"volume-title":"Nikola Milojevic-Dupont, Natasha Jaques, Anna Waldman-Brown, et al.","year":"2019","author":"Rolnick David","key":"e_1_3_2_1_54_1","unstructured":"David Rolnick , Priya L Donti , Lynn H Kaack , Kelly Kochanski , Alexandre Lacoste , Kris Sankaran , Andrew Slavin Ross , Nikola Milojevic-Dupont, Natasha Jaques, Anna Waldman-Brown, et al. 2019 . Tackling climate change with machine learning. arXiv preprint arXiv:1906.05433 (2019). David Rolnick, Priya L Donti, Lynn H Kaack, Kelly Kochanski, Alexandre Lacoste, Kris Sankaran, Andrew Slavin Ross, Nikola Milojevic-Dupont, Natasha Jaques, Anna Waldman-Brown, et al. 2019. Tackling climate change with machine learning. arXiv preprint arXiv:1906.05433 (2019)."},{"volume-title":"A deep active learning system for species identification and counting in camera trap images. Methods in Ecology and Evolution","year":"2019","author":"Norouzzadeh Mohammad Sadegh","key":"e_1_3_2_1_55_1","unstructured":"Mohammad Sadegh Norouzzadeh , Dan Morris , Sara Beery , Neel Joshi , Nebojsa Jojic , and Jeff Clune . 2019. A deep active learning system for species identification and counting in camera trap images. Methods in Ecology and Evolution ( 2019 ). Mohammad Sadegh Norouzzadeh, Dan Morris, Sara Beery, Neel Joshi, Nebojsa Jojic, and Jeff Clune. 2019. A deep active learning system for species identification and counting in camera trap images. Methods in Ecology and Evolution (2019)."},{"key":"e_1_3_2_1_56_1","doi-asserted-by":"publisher","DOI":"10.12988\/ams.2013.13025"},{"volume-title":"Praveen Kumar Paritosh, and Lora Mois Aroyo","year":"2021","author":"Sambasivan Nithya","key":"e_1_3_2_1_57_1","unstructured":"Nithya Sambasivan , Shivani Kapania , Hannah Highfill , Diana Akrong , Praveen Kumar Paritosh, and Lora Mois Aroyo . 2021 . \"Everyone wants to do the model work, not the data work\": Data Cascades in High-Stakes AI. Nithya Sambasivan, Shivani Kapania, Hannah Highfill, Diana Akrong, Praveen Kumar Paritosh, and Lora Mois Aroyo. 2021. \"Everyone wants to do the model work, not the data work\": Data Cascades in High-Stakes AI."},{"volume-title":"Three critical factors affecting automated image species recognition performance for camera traps. Ecology and evolution","year":"2020","author":"Schneider Stefan","key":"e_1_3_2_1_58_1","unstructured":"Stefan Schneider , Saul Greenberg , Graham W Taylor , and Stefan C Kremer . 2020. Three critical factors affecting automated image species recognition performance for camera traps. Ecology and evolution , Vol. 10 , 7 ( 2020 ), 3503--3517. Stefan Schneider, Saul Greenberg, Graham W Taylor, and Stefan C Kremer. 2020. Three critical factors affecting automated image species recognition performance for camera traps. Ecology and evolution, Vol. 10, 7 (2020), 3503--3517."},{"key":"e_1_3_2_1_59_1","doi-asserted-by":"publisher","DOI":"10.5555\/2891460.2891646"},{"key":"e_1_3_2_1_60_1","doi-asserted-by":"publisher","DOI":"10.1109\/EMC2.2018.00011"},{"volume-title":"Artificial intelligence for social good: A survey. arXiv preprint arXiv:2001.01818","year":"2020","author":"Shi Zheyuan Ryan","key":"e_1_3_2_1_61_1","unstructured":"Zheyuan Ryan Shi , Claire Wang , and Fei Fang . 2020. Artificial intelligence for social good: A survey. arXiv preprint arXiv:2001.01818 ( 2020 ). Zheyuan Ryan Shi, Claire Wang, and Fei Fang. 2020. Artificial intelligence for social good: A survey. arXiv preprint arXiv:2001.01818 (2020)."},{"key":"e_1_3_2_1_62_1","doi-asserted-by":"publisher","DOI":"10.1109\/SP.2017.41"},{"key":"e_1_3_2_1_63_1","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P19-1355"},{"volume-title":"Anuj Goyal, Clio Batali, Alex Encinas, Jason Yoo, et al.","year":"2021","author":"Sun Shijing","key":"e_1_3_2_1_64_1","unstructured":"Shijing Sun , Armi Tiihonen , Felipe Oviedo , Zhe Liu , Janak Thapa , Noor Titan Putri Hartono , Anuj Goyal, Clio Batali, Alex Encinas, Jason Yoo, et al. 2021 . A Physical Data Fusion Approach to Optimize Compositional Stability of Halide Perovskites. Matter ( 2021). Shijing Sun, Armi Tiihonen, Felipe Oviedo, Zhe Liu, Janak Thapa, Noor Titan Putri Hartono, Anuj Goyal, Clio Batali, Alex Encinas, Jason Yoo, et al. 2021. A Physical Data Fusion Approach to Optimize Compositional Stability of Halide Perovskites. Matter (2021)."},{"key":"e_1_3_2_1_65_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.compmedimag.2019.04.005"},{"key":"e_1_3_2_1_66_1","unstructured":"Erik Trautman. 2018. The Virtuous Cycle of AI Products. https:\/\/www.eriktrautman.com\/posts\/the-virtuous-cycle-of-ai-products Erik Trautman. 2018. The Virtuous Cycle of AI Products. https:\/\/www.eriktrautman.com\/posts\/the-virtuous-cycle-of-ai-products"},{"volume-title":"Risks of Using Non-verified Open Data: A case study on using Machine Learning techniques for predicting Pregnancy Outcomes in India. arXiv preprint arXiv:1910.02136","year":"2019","author":"Trivedi Anusua","key":"e_1_3_2_1_67_1","unstructured":"Anusua Trivedi , Sumit Mukherjee , Edmund Tse , Anne Ewing , and Juan Lavista Ferres . 2019. Risks of Using Non-verified Open Data: A case study on using Machine Learning techniques for predicting Pregnancy Outcomes in India. arXiv preprint arXiv:1910.02136 ( 2019 ). Anusua Trivedi, Sumit Mukherjee, Edmund Tse, Anne Ewing, and Juan Lavista Ferres. 2019. Risks of Using Non-verified Open Data: A case study on using Machine Learning techniques for predicting Pregnancy Outcomes in India. arXiv preprint arXiv:1910.02136 (2019)."},{"key":"e_1_3_2_1_68_1","doi-asserted-by":"publisher","DOI":"10.3390\/rs12172839"},{"volume-title":"Spacenet: A remote sensing dataset and challenge series. arXiv preprint arXiv:1807.01232","year":"2018","author":"Etten Adam Van","key":"e_1_3_2_1_69_1","unstructured":"Adam Van Etten , Dave Lindenbaum , and Todd M Bacastow . 2018 . Spacenet: A remote sensing dataset and challenge series. arXiv preprint arXiv:1807.01232 (2018). Adam Van Etten, Dave Lindenbaum, and Todd M Bacastow. 2018. Spacenet: A remote sensing dataset and challenge series. arXiv preprint arXiv:1807.01232 (2018)."},{"volume-title":"Max Tegmark, and Francesco Fuso Nerini.","year":"2020","author":"Vinuesa Ricardo","key":"e_1_3_2_1_70_1","unstructured":"Ricardo Vinuesa , Hossein Azizpour , Iolanda Leite , Madeline Balaam , Virginia Dignum , Sami Domisch , Anna Fell\"ander , Simone Daniela Langhans , Max Tegmark, and Francesco Fuso Nerini. 2020 . The role of artificial intelligence in achieving the Sustainable Development Goals. Nature communications, Vol. 11 , 1 (2020), 1--10. Ricardo Vinuesa, Hossein Azizpour, Iolanda Leite, Madeline Balaam, Virginia Dignum, Sami Domisch, Anna Fell\"ander, Simone Daniela Langhans, Max Tegmark, and Francesco Fuso Nerini. 2020. The role of artificial intelligence in achieving the Sustainable Development Goals. Nature communications, Vol. 11, 1 (2020), 1--10."},{"volume-title":"Sheridan Martini, Jason R Cantrell, Daniel K Wheeler, Alessandro Sette, and Bjoern Peters.","year":"2019","author":"Vita Randi","key":"e_1_3_2_1_71_1","unstructured":"Randi Vita , Swapnil Mahajan , James A Overton , Sandeep Kumar Dhanda , Sheridan Martini, Jason R Cantrell, Daniel K Wheeler, Alessandro Sette, and Bjoern Peters. 2019 . The immune epitope database (IEDB): 2018 update. Nucleic acids research, Vol. 47 , D1 (2019), D339--D343. Randi Vita, Swapnil Mahajan, James A Overton, Sandeep Kumar Dhanda, Sheridan Martini, Jason R Cantrell, Daniel K Wheeler, Alessandro Sette, and Bjoern Peters. 2019. The immune epitope database (IEDB): 2018 update. Nucleic acids research, Vol. 47, D1 (2019), D339--D343."},{"volume-title":"Machine learning that matters. arXiv preprint arXiv:1206.4656","year":"2012","author":"Wagstaff Kiri","key":"e_1_3_2_1_72_1","unstructured":"Kiri Wagstaff . 2012. Machine learning that matters. arXiv preprint arXiv:1206.4656 ( 2012 ). Kiri Wagstaff. 2012. Machine learning that matters. arXiv preprint arXiv:1206.4656 (2012)."},{"key":"e_1_3_2_1_73_1","doi-asserted-by":"publisher","DOI":"10.3390\/rs12020207"},{"key":"e_1_3_2_1_74_1","doi-asserted-by":"publisher","DOI":"10.1111\/1365-2656.12780"},{"key":"e_1_3_2_1_75_1","doi-asserted-by":"publisher","DOI":"10.1145\/3398370"},{"key":"e_1_3_2_1_76_1","doi-asserted-by":"publisher","DOI":"10.1109\/HPCA.2019.00048"},{"volume-title":"Differentially private generative adversarial network. arXiv preprint arXiv:1802.06739","year":"2018","author":"Xie Liyang","key":"e_1_3_2_1_77_1","unstructured":"Liyang Xie , Kaixiang Lin , Shu Wang , Fei Wang , and Jiayu Zhou . 2018. Differentially private generative adversarial network. arXiv preprint arXiv:1802.06739 ( 2018 ). Liyang Xie, Kaixiang Lin, Shu Wang, Fei Wang, and Jiayu Zhou. 2018. Differentially private generative adversarial network. arXiv preprint arXiv:1802.06739 (2018)."},{"key":"e_1_3_2_1_78_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICDE48307.2020.00198"},{"key":"e_1_3_2_1_79_1","doi-asserted-by":"publisher","DOI":"10.1145\/3110025.3123028"},{"volume-title":"Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS medicine","year":"2018","author":"Zech John R","key":"e_1_3_2_1_80_1","unstructured":"John R Zech , Marcus A Badgeley , Manway Liu , Anthony B Costa , Joseph J Titano , and Eric Karl Oermann . 2018. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS medicine , Vol. 15 , 11 ( 2018 ), e1002683. John R Zech, Marcus A Badgeley, Manway Liu, Anthony B Costa, Joseph J Titano, and Eric Karl Oermann. 2018. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS medicine, Vol. 15, 11 (2018), e1002683."},{"key":"e_1_3_2_1_81_1","doi-asserted-by":"publisher","DOI":"10.1093\/nsr\/nwx106"}],"event":{"name":"AIES '21: AAAI\/ACM Conference on AI, Ethics, and Society","sponsor":["SIGAI ACM Special Interest Group on Artificial Intelligence","AAAI"],"location":"Virtual Event USA","acronym":"AIES '21"},"container-title":["Proceedings of the 2021 AAAI\/ACM Conference on AI, Ethics, and Society"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3461702.3462599","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,11]],"date-time":"2023-01-11T00:49:49Z","timestamp":1673398189000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3461702.3462599"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,7,21]]},"references-count":80,"alternative-id":["10.1145\/3461702.3462599","10.1145\/3461702"],"URL":"https:\/\/doi.org\/10.1145\/3461702.3462599","relation":{},"subject":[],"published":{"date-parts":[[2021,7,21]]},"assertion":[{"value":"2021-07-30","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}