{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T21:30:13Z","timestamp":1730323813616,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":19,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2000,7]]},"DOI":"10.1145\/345542.345655","type":"proceedings-article","created":{"date-parts":[[2003,11,25]],"date-time":"2003-11-25T17:11:45Z","timestamp":1069780305000},"page":"288-291","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":0,"title":["How to check if a finitely generated commutative monoid is a principal ideal commutative monoid"],"prefix":"10.1145","author":[{"given":"Jos\u00e9 Carlos","family":"Rosales","sequence":"first","affiliation":[{"name":"Departamento de \u00c1lgebra, Universidad de Granada, E-18071 Granada, Spain"}]},{"given":"Pedro A.","family":"Garc\u00eda-S\u00e1nchez","sequence":"additional","affiliation":[{"name":"Departamento de \u00c1lgebra, Universidad de Granada, E-18071 Granada, Spain"}]},{"given":"Juan Ignacio","family":"Garc\u00eda-Garc\u00eda","sequence":"additional","affiliation":[{"name":"Departamento de \u00c1lgebra, Universidad de Granada, E-18071 Granada, Spain"}]}],"member":"320","published-online":{"date-parts":[[2000,7]]},"reference":[{"key":"e_1_3_2_1_1_2","doi-asserted-by":"publisher","DOI":"10.1007\/BF02573445"},{"key":"e_1_3_2_1_2_2","first-page":"401","article-title":"Ideale in kommutative Halbgruppen","volume":"35","author":"Arnold I.","year":"1929","unstructured":"I. Arnold , Ideale in kommutative Halbgruppen , Mat. Sb. 35 ( 1929 ), 401 - 408 . I. Arnold, Ideale in kommutative Halbgruppen, Mat. Sb. 35(1929), 401-408.","journal-title":"Mat. Sb."},{"key":"e_1_3_2_1_3_2","doi-asserted-by":"crossref","DOI":"10.1007\/978-1-4612-0913-3","volume-title":"GrSbner bases: a computational approach to commutative algebra.\" Springer","author":"Becker T.","year":"1993","unstructured":"T. Becker and W. Weispfenning , \" GrSbner bases: a computational approach to commutative algebra.\" Springer , 1993 . T. Becker and W. Weispfenning, \"GrSbner bases: a computational approach to commutative algebra.\" Springer, 1993."},{"key":"e_1_3_2_1_4_2","volume-title":"Amer. Math. Soc.","author":"Clifford A. H.","year":"1961","unstructured":"A. H. Clifford and G. B. Preston , \" The algebraic theory of semigroups \", Amer. Math. Soc. , Providence , 1961 . A. H. Clifford and G. B. Preston, \"The algebraic theory of semigroups\", Amer. Math. Soc., Providence, 1961."},{"key":"e_1_3_2_1_5_2","doi-asserted-by":"publisher","DOI":"10.2307\/1968637"},{"key":"e_1_3_2_1_6_2","volume-title":"Version4.1","author":"The GAP Group","year":"1999","unstructured":"The GAP Group , GAP Groups , Algorithms, and Programming , Version4.1 ; Aachen , St Andrews , 1999 . (ht t p:\/\/www-gap, dcs. st- an d.ac. uk\/--~ gap ) The GAP Group, GAP Groups, Algorithms, and Programming, Version4.1; Aachen, St Andrews, 1999. (ht t p:\/\/www-gap, dcs. st- an d.ac. uk\/--~ gap )"},{"key":"e_1_3_2_1_7_2","doi-asserted-by":"crossref","first-page":"677","DOI":"10.21136\/CMJ.1996.127327","article-title":"On the structure and arithmetic of finitely primary monoids","volume":"46","author":"Geroldinger A.","year":"1996","unstructured":"A. Geroldinger , On the structure and arithmetic of finitely primary monoids , Czech. Math. J. 46 ( 1996 ), 677 - 695 . A. Geroldinger, On the structure and arithmetic of finitely primary monoids, Czech. Math. J. 46(1996), 677-695.","journal-title":"Czech. Math. J."},{"key":"e_1_3_2_1_8_2","unstructured":"R. Gilmer \"Multiplicative ideal theory\" Marcel Dekker New York 1972. R. Gilmer \"Multiplicative ideal theory\" Marcel Dekker New York 1972."},{"key":"e_1_3_2_1_9_2","volume-title":"Chicago lectures in Mathematics","author":"Gilmer R.","year":"1984","unstructured":"R. Gilmer , \"Commutative semigroups rings\" , Chicago lectures in Mathematics , 1984 . R. Gilmer, \"Commutative semigroups rings\", Chicago lectures in Mathematics, 1984."},{"key":"e_1_3_2_1_10_2","volume-title":"Marcel Dekker Inc.","author":"Halter-Koch F.","year":"1998","unstructured":"F. Halter-Koch , \"Ideal systems an introduction to multiplicative ideal theory \", Marcel Dekker Inc. , 1998 . F. Halter-Koch, \"Ideal systems an introduction to multiplicative ideal theory\", Marcel Dekker Inc., 1998."},{"key":"e_1_3_2_1_11_2","volume-title":"Boll. U. M. I. ? 9-b","author":"Halter-Koch F.","year":"1995","unstructured":"F. Halter-Koch , Divisor theories with primary elements and weakly Krull domains , Boll. U. M. I. ? 9-b ( 1995 ), 417-441. F. Halter-Koch, Divisor theories with primary elements and weakly Krull domains, Boll. U. M. I. ? 9-b (1995), 417-441."},{"key":"e_1_3_2_1_12_2","volume-title":"New York and London","author":"McCarthy M. D.","year":"1971","unstructured":"M. D. Larsen an P. J. McCarthy , \"Multiplicative theory of ideals\", Academic Press , New York and London , 1971 . M. D. Larsen an P. J. McCarthy, \"Multiplicative theory of ideals\", Academic Press, New York and London, 1971."},{"key":"e_1_3_2_1_13_2","volume-title":"Oxford-Edinburgh-New York","author":"L.","year":"1965","unstructured":"L. R6dei, \"The theory of finitely generated commutative semigroups\", Pergamon , Oxford-Edinburgh-New York , 1965 . L. R6dei, \"The theory of finitely generated commutative semigroups\", Pergamon, Oxford-Edinburgh-New York, 1965."},{"key":"e_1_3_2_1_14_2","volume-title":"Finitely generated commutative monoids","author":"Rosales J. C.","year":"1999","unstructured":"J. C. Rosales and P. A. Garc~a-S~nchez , \" Finitely generated commutative monoids \", Nova Science Publishers , New York , 1999 . J. C. Rosales and P. A. Garc~a-S~nchez, \"Finitely generated commutative monoids\", Nova Science Publishers, New York, 1999."},{"key":"e_1_3_2_1_15_2","doi-asserted-by":"crossref","first-page":"633","DOI":"10.21136\/CMJ.1971.101062","article-title":"A class of commutative semigroups in which the idempotents are linearly ordered","volume":"21","author":"Satyanarayana M.","year":"1971","unstructured":"M. Satyanarayana , A class of commutative semigroups in which the idempotents are linearly ordered , Czech. Math. Jour. , 21 ( 1971 ), 633 - 637 . M. Satyanarayana, A class of commutative semigroups in which the idempotents are linearly ordered, Czech. Math. Jour., 21 (1971), 633-637.","journal-title":"Czech. Math. Jour."},{"key":"e_1_3_2_1_16_2","doi-asserted-by":"crossref","first-page":"509","DOI":"10.21136\/CMJ.1972.101121","article-title":"Commutative primary semigroups","volume":"22","author":"Satyanarayana M.","year":"1972","unstructured":"M. Satyanarayana , Commutative primary semigroups , Czech. Math. Jour. , 22 ( 1972 ), 509 - 516 . M. Satyanarayana, Commutative primary semigroups, Czech. Math. Jour., 22 (1972), 509-516.","journal-title":"Czech. Math. Jour."},{"key":"e_1_3_2_1_17_2","doi-asserted-by":"crossref","first-page":"61","DOI":"10.21136\/CMJ.1977.101446","article-title":"On commutative semigroups which are unions of a finite number of principal ideals","volume":"27","author":"Satyanarayana M.","year":"1977","unstructured":"M. Satyanarayana , On commutative semigroups which are unions of a finite number of principal ideals , Czech. Math. Jour. , 27 ( 1977 ), 61 - 68 . M. Satyanarayana, On commutative semigroups which are unions of a finite number of principal ideals, Czech. Math. Jour., 27 (1977), 61-68.","journal-title":"Czech. Math. Jour."},{"key":"e_1_3_2_1_18_2","doi-asserted-by":"crossref","first-page":"171","DOI":"10.21136\/CMJ.1978.101524","article-title":"Structure and ideal theory of commutative monoids","volume":"28","author":"Satyanarayana M.","year":"1978","unstructured":"M. Satyanarayana , Structure and ideal theory of commutative monoids , Czech. Math. Jour. , 28 ( 1978 ), 171 - 180 . M. Satyanarayana, Structure and ideal theory of commutative monoids, Czech. Math. Jour., 28 (1978), 171-180.","journal-title":"Czech. Math. Jour."},{"key":"e_1_3_2_1_19_2","doi-asserted-by":"crossref","first-page":"72","DOI":"10.21136\/CMJ.1969.100877","article-title":"Prime ideal and maximal ideals in semigroups","volume":"19","author":"Schwarz S.","year":"1969","unstructured":"S. Schwarz , Prime ideal and maximal ideals in semigroups , Czech. Math. J. 19 ( 1969 ), 72 - 79 . S. Schwarz, Prime ideal and maximal ideals in semigroups, Czech. Math. J. 19 (1969), 72-79.","journal-title":"Czech. Math. J."}],"event":{"name":"ISSAC00: International Symposium on Symbolic and Algebraic Computation","sponsor":["SIGSAM ACM Special Interest Group on Symbolic and Algebraic Manipulation"],"location":"St. Andrews Scotland","acronym":"ISSAC00"},"container-title":["Proceedings of the 2000 international symposium on Symbolic and algebraic computation"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/345542.345655","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,7]],"date-time":"2023-01-07T08:03:43Z","timestamp":1673078623000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/345542.345655"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2000,7]]},"references-count":19,"alternative-id":["10.1145\/345542.345655","10.1145\/345542"],"URL":"https:\/\/doi.org\/10.1145\/345542.345655","relation":{},"subject":[],"published":{"date-parts":[[2000,7]]},"assertion":[{"value":"2000-07-01","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}