{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T13:10:33Z","timestamp":1740143433643,"version":"3.37.3"},"reference-count":82,"publisher":"Association for Computing Machinery (ACM)","issue":"3","funder":[{"name":"Cooperative Research Agreement","award":["70NANB14H209"]},{"DOI":"10.13039\/100008510","name":"University of Maryland","doi-asserted-by":"crossref","id":[{"id":"10.13039\/100008510","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":["J. Emerg. Technol. Comput. Syst."],"published-print":{"date-parts":[[2021,7,31]]},"abstract":"\n Race logic, an arrival-time-coded logic family, has demonstrated energy and performance improvements for applications ranging from dynamic programming to machine learning. However, the various\n ad hoc<\/jats:italic>\n mappings of algorithms into hardware rely on researcher ingenuity and result in custom architectures that are difficult to systematize. We propose to associate race logic with the mathematical field of tropical algebra, enabling a more methodical approach toward building temporal circuits. This association between the mathematical primitives of tropical algebra and generalized race logic computations guides the design of temporally coded tropical circuits. It also serves as a framework for expressing high-level timing-based algorithms. This abstraction, when combined with temporal memory, allows for the systematic exploration of race logic\u2013based temporal architectures by making it possible to partition feed-forward computations into stages and organize them into a state machine. We leverage analog memristor-based temporal memories to design such a state machine that operates purely on time-coded wavefronts. We implement a version of Dijkstra\u2019s algorithm to evaluate this temporal state machine. This demonstration shows the promise of expanding the expressibility of temporal computing to enable it to deliver significant energy and throughput advantages.\n <\/jats:p>","DOI":"10.1145\/3451214","type":"journal-article","created":{"date-parts":[[2021,5,11]],"date-time":"2021-05-11T13:59:37Z","timestamp":1620741577000},"page":"1-27","update-policy":"https:\/\/doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":5,"title":["Temporal State Machines: Using Temporal Memory to Stitch Time-based Graph Computations"],"prefix":"10.1145","volume":"17","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-4121-1336","authenticated-orcid":false,"given":"Advait","family":"Madhavan","sequence":"first","affiliation":[{"name":"University of Maryland and National Institute of Standards and Technology, Gaithersburg, MD, United States"}]},{"given":"Matthew W.","family":"Daniels","sequence":"additional","affiliation":[{"name":"National Institute of Standards and Technology, Gaithersburg, MD, United States"}]},{"given":"Mark D.","family":"Stiles","sequence":"additional","affiliation":[{"name":"National Institute of Standards and Technology, Gaithersburg, MD, United States"}]}],"member":"320","published-online":{"date-parts":[[2021,5,11]]},"reference":[{"key":"e_1_2_1_1_1","doi-asserted-by":"publisher","DOI":"10.1145\/3354265.3354285"},{"key":"e_1_2_1_2_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPDS.2020.3001645"},{"key":"e_1_2_1_3_1","doi-asserted-by":"publisher","DOI":"10.1109\/TCAD.2015.2474396"},{"key":"e_1_2_1_4_1","doi-asserted-by":"publisher","DOI":"10.1088\/0957-4484\/23\/7\/075201"},{"key":"e_1_2_1_5_1","doi-asserted-by":"publisher","DOI":"10.1137\/140953800"},{"key":"e_1_2_1_6_1","doi-asserted-by":"publisher","DOI":"10.1137\/130936464"},{"key":"e_1_2_1_7_1","doi-asserted-by":"publisher","DOI":"10.1523\/JNEUROSCI.18-24-10464.1998"},{"key":"e_1_2_1_8_1","doi-asserted-by":"publisher","DOI":"10.1016\/S0925-2312(01)00658-0"},{"key":"e_1_2_1_9_1","volume-title":"Distributed-memory breadth-first search on massive graphs. arXiv:1705.04590","author":"Bulu\u00e7 Aydin","year":"2017","unstructured":"Aydin Bulu\u00e7 , Scott Beamer , Kamesh Madduri , Krste Asanovic , and David Patterson . 2017. Distributed-memory breadth-first search on massive graphs. arXiv:1705.04590 ( 2017 ). Aydin Bulu\u00e7, Scott Beamer, Kamesh Madduri, Krste Asanovic, and David Patterson. 2017. Distributed-memory breadth-first search on massive graphs. arXiv:1705.04590 (2017)."},{"key":"e_1_2_1_10_1","doi-asserted-by":"publisher","DOI":"10.1109\/TED.2015.2439635"},{"key":"e_1_2_1_11_1","first-page":"42429","article-title":"A multiply-add engine with monolithically integrated 3D memristor crossbar\/CMOS hybrid circuit. Sci","volume":"7","author":"Chakrabarti Bhaswar","year":"2017","unstructured":"Bhaswar Chakrabarti , Miguel Angel Lastras-Monta\u00f1o , Gina Adam , Mirko Prezioso , Brian Hoskins , M. Payvand , A. Madhavan , A. Ghofrani , L. Theogarajan , K.-T. Cheng , et\u00a0al. 2017 . A multiply-add engine with monolithically integrated 3D memristor crossbar\/CMOS hybrid circuit. Sci . Rep. 7 (2017), 42429 . Bhaswar Chakrabarti, Miguel Angel Lastras-Monta\u00f1o, Gina Adam, Mirko Prezioso, Brian Hoskins, M. Payvand, A. Madhavan, A. Ghofrani, L. Theogarajan, K.-T. Cheng, et\u00a0al. 2017. A multiply-add engine with monolithically integrated 3D memristor crossbar\/CMOS hybrid circuit. Sci. Rep. 7 (2017), 42429.","journal-title":"Rep."},{"key":"e_1_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1109\/ISCA45697.2020.00044"},{"key":"e_1_2_1_13_1","doi-asserted-by":"publisher","DOI":"10.1088\/1361-6528\/ab3480"},{"key":"e_1_2_1_14_1","doi-asserted-by":"publisher","DOI":"10.1109\/TED.2015.2492421"},{"key":"e_1_2_1_15_1","doi-asserted-by":"publisher","DOI":"10.1109\/JSSC.2020.3021066"},{"key":"e_1_2_1_16_1","doi-asserted-by":"publisher","DOI":"10.1088\/1361-6641\/ab2c09"},{"key":"e_1_2_1_17_1","volume-title":"Spiking associative memory for spatio-temporal patterns. arXiv:2006.16684","author":"Davidson Simon","year":"2020","unstructured":"Simon Davidson , Stephen B. Furber , and Oliver Rhodes . 2020. Spiking associative memory for spatio-temporal patterns. arXiv:2006.16684 ( 2020 ). Simon Davidson, Stephen B. Furber, and Oliver Rhodes. 2020. Spiking associative memory for spatio-temporal patterns. arXiv:2006.16684 (2020)."},{"key":"e_1_2_1_18_1","doi-asserted-by":"publisher","DOI":"10.1038\/s42256-019-0097-1"},{"key":"e_1_2_1_19_1","doi-asserted-by":"publisher","DOI":"10.1109\/MM.2018.112130359"},{"key":"e_1_2_1_20_1","doi-asserted-by":"publisher","DOI":"10.1109\/TCSII.2006.869916"},{"key":"e_1_2_1_21_1","doi-asserted-by":"publisher","DOI":"10.1523\/JNEUROSCI.3962-09.2010"},{"volume-title":"Proceedings of the IEEE International Solid-state Circuits Conference (ISSCC\u201919)","author":"Everson Luke R.","key":"e_1_2_1_22_1","unstructured":"Luke R. Everson , Sachin S. Sapatnekar , and Chris H. Kim . 2019. 2.5 A 40 40 four-neighbor time-based in-memory computing graph ASIC chip featuring wavefront expansion and 2D gradient control . In Proceedings of the IEEE International Solid-state Circuits Conference (ISSCC\u201919) . IEEE, 50\u201352. Luke R. Everson, Sachin S. Sapatnekar, and Chris H. Kim. 2019. 2.5 A 40 40 four-neighbor time-based in-memory computing graph ASIC chip featuring wavefront expansion and 2D gradient control. In Proceedings of the IEEE International Solid-state Circuits Conference (ISSCC\u201919). IEEE, 50\u201352."},{"key":"e_1_2_1_23_1","doi-asserted-by":"publisher","DOI":"10.1145\/2621934.2621936"},{"key":"e_1_2_1_24_1","doi-asserted-by":"publisher","DOI":"10.1002\/adma.201604310"},{"key":"e_1_2_1_25_1","doi-asserted-by":"publisher","DOI":"10.1109\/JPROC.2014.2304638"},{"key":"e_1_2_1_26_1","doi-asserted-by":"publisher","DOI":"10.23919\/VLSIT.2019.8776570"},{"key":"e_1_2_1_27_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11390-019-1914-z"},{"key":"e_1_2_1_28_1","doi-asserted-by":"publisher","DOI":"10.1162\/0899766053429390"},{"key":"e_1_2_1_29_1","doi-asserted-by":"publisher","DOI":"10.5555\/3195638.3195707"},{"key":"e_1_2_1_30_1","volume-title":"Schuman","author":"Hamilton Kathleen E.","year":"2019","unstructured":"Kathleen E. Hamilton , Tiffany M. Mintz , and Catherine D . Schuman . 2019 . Spike-based primitives for graph algorithms. arXiv:1903.10574 (2019). Kathleen E. Hamilton, Tiffany M. Mintz, and Catherine D. Schuman. 2019. Spike-based primitives for graph algorithms. arXiv:1903.10574 (2019)."},{"key":"e_1_2_1_31_1","doi-asserted-by":"publisher","DOI":"10.14778\/3358701.3358706"},{"key":"e_1_2_1_32_1","doi-asserted-by":"publisher","DOI":"10.1145\/3282307"},{"key":"e_1_2_1_33_1","doi-asserted-by":"publisher","DOI":"10.1162\/089976606775093882"},{"key":"e_1_2_1_34_1","volume-title":"Proceedings of the IEEE International Solid-state Circuits Conference (ISSCC\u201919)","author":"Jain Pulkit","year":"2019","unstructured":"Pulkit Jain , Umut Arslan , Meenakshi Sekhar , Blake C. Lin , Liqiong Wei , Tanaya Sahu , Juan Alzate-Vinasco , Ajay Vangapaty , Mesut Meterelliyoz , Nathan Strutt , et\u00a0al. 2019 . 13.2 A 3.6 Mb 10.1 Mb\/mm 2 embedded non-volatile ReRAM macro in 22nm FinFET technology with adaptive forming\/set\/reset schemes yielding down to 0.5 V with sensing time of 5ns at 0.7 V . In Proceedings of the IEEE International Solid-state Circuits Conference (ISSCC\u201919) . IEEE, 212\u2013214. Pulkit Jain, Umut Arslan, Meenakshi Sekhar, Blake C. Lin, Liqiong Wei, Tanaya Sahu, Juan Alzate-Vinasco, Ajay Vangapaty, Mesut Meterelliyoz, Nathan Strutt, et\u00a0al. 2019. 13.2 A 3.6 Mb 10.1 Mb\/mm 2 embedded non-volatile ReRAM macro in 22nm FinFET technology with adaptive forming\/set\/reset schemes yielding down to 0.5 V with sensing time of 5ns at 0.7 V. In Proceedings of the IEEE International Solid-state Circuits Conference (ISSCC\u201919). IEEE, 212\u2013214."},{"key":"e_1_2_1_35_1","doi-asserted-by":"publisher","DOI":"10.1109\/SISPAD.2014.6931558"},{"key":"e_1_2_1_36_1","doi-asserted-by":"publisher","DOI":"10.1145\/3381755.3381762"},{"key":"e_1_2_1_37_1","doi-asserted-by":"publisher","DOI":"10.1109\/HPEC.2016.7761646"},{"key":"e_1_2_1_38_1","doi-asserted-by":"publisher","DOI":"10.1038\/nn.3905"},{"key":"e_1_2_1_39_1","doi-asserted-by":"publisher","DOI":"10.1109\/JSSC.2013.2297412"},{"key":"e_1_2_1_40_1","doi-asserted-by":"publisher","DOI":"10.1162\/NECO_a_00783"},{"key":"e_1_2_1_41_1","doi-asserted-by":"publisher","DOI":"10.1038\/s41928-017-0002-z"},{"key":"e_1_2_1_42_1","doi-asserted-by":"publisher","DOI":"10.1109\/VLSIT.2018.8510648"},{"key":"e_1_2_1_43_1","volume-title":"Proceedings of the Chapel Hill Conference on VLSI","author":"Lopresti D. P.","year":"1985","unstructured":"D. P. Lopresti and R. J. Lipton . 1985. A systolic array for rapid string comparison . In Proceedings of the Chapel Hill Conference on VLSI , 1985 . Computer Science Press, Chapel Hill, NC, 363\u2013376. D. P. Lopresti and R. J. Lipton.1985. A systolic array for rapid string comparison. In Proceedings of the Chapel Hill Conference on VLSI, 1985. Computer Science Press, Chapel Hill, NC, 363\u2013376."},{"volume-title":"Proceedings of the IEEE Custom Integrated Circuits Conference (CICC\u201917)","author":"Madhavan Advait","key":"e_1_2_1_44_1","unstructured":"Advait Madhavan , Timothy Sherwood , and D. Strukov . 2017. A 4-mm 2 180-nm-CMOS 15-Giga-cell-updates-per-second DNA sequence alignment engine based on asynchronous race conditions . In Proceedings of the IEEE Custom Integrated Circuits Conference (CICC\u201917) . IEEE, 1\u20134. Advait Madhavan, Timothy Sherwood, and D. Strukov. 2017. A 4-mm 2 180-nm-CMOS 15-Giga-cell-updates-per-second DNA sequence alignment engine based on asynchronous race conditions. In Proceedings of the IEEE Custom Integrated Circuits Conference (CICC\u201917). IEEE, 1\u20134."},{"key":"e_1_2_1_45_1","doi-asserted-by":"publisher","DOI":"10.1145\/2678373.2665747"},{"key":"e_1_2_1_46_1","doi-asserted-by":"publisher","DOI":"10.1109\/ISCAS45731.2020.9180662"},{"key":"e_1_2_1_47_1","volume-title":"Proceedings of the 1st Unary Computing Workshop (ISCA\u201919)","author":"Madhavan Advait","year":"2019","unstructured":"Advait Madhavan , Georgios Tzimpragos , Mark Stiles , and Timothy Sherwood . 2019 . A truth-matrix view into unary computing . In Proceedings of the 1st Unary Computing Workshop (ISCA\u201919) . Advait Madhavan, Georgios Tzimpragos, Mark Stiles, and Timothy Sherwood. 2019. A truth-matrix view into unary computing. In Proceedings of the 1st Unary Computing Workshop (ISCA\u201919)."},{"key":"e_1_2_1_48_1","doi-asserted-by":"publisher","DOI":"10.1109\/JSSC.2017.2712626"},{"key":"e_1_2_1_49_1","doi-asserted-by":"publisher","DOI":"10.5555\/639508.639512"},{"key":"e_1_2_1_50_1","volume-title":"John Paul Shen, and James E. Smith","author":"Nair Harideep","year":"2020","unstructured":"Harideep Nair , John Paul Shen, and James E. Smith . 2020 . Direct CMOS Implementation of Neuromorphic Temporal Neural Networks for Sensory Processing . arxiv:cs.AR\/2009.00457 (2020). Harideep Nair, John Paul Shen, and James E. Smith. 2020. Direct CMOS Implementation of Neuromorphic Temporal Neural Networks for Sensory Processing. arxiv:cs.AR\/2009.00457 (2020)."},{"key":"e_1_2_1_51_1","doi-asserted-by":"publisher","DOI":"10.1109\/TVLSI.2018.2822300"},{"key":"e_1_2_1_52_1","doi-asserted-by":"publisher","DOI":"10.1109\/JSSC.2013.2293019"},{"key":"e_1_2_1_53_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2015.2392947"},{"key":"e_1_2_1_54_1","first-page":"40703","article-title":"A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems. Sci","volume":"7","author":"Osswald Marc","year":"2017","unstructured":"Marc Osswald , Sio-Hoi Ieng , Ryad Benosman , and Giacomo Indiveri . 2017 . A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems. Sci . Rep. 7 (2017), 40703 . Marc Osswald, Sio-Hoi Ieng, Ryad Benosman, and Giacomo Indiveri. 2017. A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems. Sci. Rep. 7 (2017), 40703.","journal-title":"Rep."},{"key":"e_1_2_1_55_1","doi-asserted-by":"publisher","DOI":"10.1162\/neco.2009.11-08-901"},{"key":"e_1_2_1_56_1","doi-asserted-by":"publisher","DOI":"10.3389\/fncom.2013.00098"},{"key":"e_1_2_1_57_1","doi-asserted-by":"publisher","DOI":"10.1109\/IMW48823.2020.9108142"},{"key":"e_1_2_1_58_1","doi-asserted-by":"publisher","DOI":"10.1109\/JSSC.2019.2939888"},{"key":"e_1_2_1_59_1","doi-asserted-by":"publisher","DOI":"10.1145\/3320288.3320290"},{"key":"e_1_2_1_60_1","doi-asserted-by":"publisher","DOI":"10.1109\/ISCA.2018.00033"},{"key":"e_1_2_1_61_1","doi-asserted-by":"publisher","DOI":"10.1109\/HPCA.2018.00052"},{"key":"e_1_2_1_62_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.vlsi.2017.02.002"},{"key":"e_1_2_1_63_1","doi-asserted-by":"publisher","DOI":"10.1109\/JETCAS.2019.2933148"},{"key":"e_1_2_1_64_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neunet.2018.12.002"},{"volume-title":"Parallel Processing in Neural Systems and Computers","author":"Thorpe Simon J.","key":"e_1_2_1_65_1","unstructured":"Simon J. Thorpe . 1990. Spike arrival times: A highly efficient coding scheme for neural networks . In Parallel Processing in Neural Systems and Computers , R. Eckmiller, G. Hartmann, and G. Hauske (Eds.). North Holland Elsevier , Amsterdam , 91\u201394. Simon J. Thorpe. 1990. Spike arrival times: A highly efficient coding scheme for neural networks. In Parallel Processing in Neural Systems and Computers, R. Eckmiller, G. Hartmann, and G. Hauske (Eds.). North Holland Elsevier, Amsterdam, 91\u201394."},{"key":"e_1_2_1_66_1","doi-asserted-by":"publisher","DOI":"10.1145\/3297858.3304036"},{"key":"e_1_2_1_67_1","volume-title":"Proceedings of the 1st Unary Computing Workshop (ISCA\u201919)","author":"Tzimpragos Georgios","year":"2019","unstructured":"Georgios Tzimpragos , Nestan Tsiskaridze , Kylie Huch , Advait Madhavan , and Timothy Sherwood . 2019 . From arbitrary functions to space-time implementations . In Proceedings of the 1st Unary Computing Workshop (ISCA\u201919) . Georgios Tzimpragos, Nestan Tsiskaridze, Kylie Huch, Advait Madhavan, and Timothy Sherwood. 2019. From arbitrary functions to space-time implementations. In Proceedings of the 1st Unary Computing Workshop (ISCA\u201919)."},{"key":"e_1_2_1_68_1","doi-asserted-by":"publisher","DOI":"10.1145\/3373376.3378517"},{"key":"e_1_2_1_69_1","first-page":"107","article-title":"Temporal memory with magnetic racetracks. J. Expl. Sol.-state","volume":"6","author":"Vakili Hamed","year":"2020","unstructured":"Hamed Vakili , Mohammad Nazmus Sakib , Samiran Ganguly , Mircea Stan , Matthew W. Daniels , Advait Madhavan , Mark D. Stiles , and Avik W. Ghosh . 2020 . Temporal memory with magnetic racetracks. J. Expl. Sol.-state Comp. Dev. and Circ. 6 , 2 (2020), 107 \u2013 115 . Hamed Vakili, Mohammad Nazmus Sakib, Samiran Ganguly, Mircea Stan, Matthew W. Daniels, Advait Madhavan, Mark D. Stiles, and Avik W. Ghosh. 2020. Temporal memory with magnetic racetracks. J. Expl. Sol.-state Comp. Dev. and Circ. 6, 2 (2020), 107\u2013115.","journal-title":"Comp. Dev. and Circ."},{"key":"e_1_2_1_70_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.tins.2004.10.010"},{"key":"e_1_2_1_71_1","doi-asserted-by":"publisher","DOI":"10.1162\/neco_a_01113"},{"key":"e_1_2_1_72_1","doi-asserted-by":"publisher","DOI":"10.1145\/3016078.2851145"},{"key":"e_1_2_1_73_1","doi-asserted-by":"publisher","DOI":"10.3389\/fnins.2018.00331"},{"key":"e_1_2_1_74_1","doi-asserted-by":"publisher","DOI":"10.1038\/s41563-019-0291-x"},{"key":"e_1_2_1_75_1","doi-asserted-by":"publisher","DOI":"10.1145\/3352460.3358318"},{"key":"e_1_2_1_76_1","doi-asserted-by":"publisher","DOI":"10.1109\/JSSC.2005.852042"},{"key":"e_1_2_1_77_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11538-018-0493-4"},{"key":"e_1_2_1_78_1","doi-asserted-by":"publisher","DOI":"10.1109\/JPROC.2018.2790840"},{"key":"e_1_2_1_79_1","doi-asserted-by":"publisher","DOI":"10.1145\/3174243.3174245"},{"key":"e_1_2_1_80_1","volume-title":"Proceedings of the 35th International Conference on Machine Learning (Proceedings of Machine Learning Research), Jennifer Dy and Andreas Krause (Eds.)","volume":"80","author":"Zhang Liwen","year":"2018","unstructured":"Liwen Zhang , Gregory Naitzat , and Lek-Heng Lim . 2018 . Tropical geometry of deep neural networks . In Proceedings of the 35th International Conference on Machine Learning (Proceedings of Machine Learning Research), Jennifer Dy and Andreas Krause (Eds.) , Vol. 80 . PMLR, Stockholmsm\u00e4ssan, Stockholm Sweden, 5824\u20135832. Retrieved from http:\/\/proceedings.mlr.press\/v80\/zhang18i.html. Liwen Zhang, Gregory Naitzat, and Lek-Heng Lim. 2018. Tropical geometry of deep neural networks. In Proceedings of the 35th International Conference on Machine Learning (Proceedings of Machine Learning Research), Jennifer Dy and Andreas Krause (Eds.), Vol. 80. PMLR, Stockholmsm\u00e4ssan, Stockholm Sweden, 5824\u20135832. Retrieved from http:\/\/proceedings.mlr.press\/v80\/zhang18i.html."},{"key":"e_1_2_1_81_1","doi-asserted-by":"publisher","DOI":"10.1145\/3287624.3287711"},{"volume-title":"Proceedings of the 29th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD\u201917)","author":"Zhou Shijie","key":"e_1_2_1_82_1","unstructured":"Shijie Zhou and Viktor K. Prasanna . 2017. Accelerating graph analytics on CPU-FPGA heterogeneous platform . In Proceedings of the 29th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD\u201917) . IEEE, 137\u2013144. Shijie Zhou and Viktor K. Prasanna. 2017. Accelerating graph analytics on CPU-FPGA heterogeneous platform. In Proceedings of the 29th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD\u201917). IEEE, 137\u2013144."}],"container-title":["ACM Journal on Emerging Technologies in Computing Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3451214","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T21:35:40Z","timestamp":1672608940000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3451214"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,5,11]]},"references-count":82,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2021,7,31]]}},"alternative-id":["10.1145\/3451214"],"URL":"https:\/\/doi.org\/10.1145\/3451214","relation":{},"ISSN":["1550-4832","1550-4840"],"issn-type":[{"type":"print","value":"1550-4832"},{"type":"electronic","value":"1550-4840"}],"subject":[],"published":{"date-parts":[[2021,5,11]]},"assertion":[{"value":"2020-09-01","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2021-02-01","order":1,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2021-05-11","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}