{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,5]],"date-time":"2025-04-05T10:07:35Z","timestamp":1743847655803},"publisher-location":"New York, NY, USA","reference-count":43,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2021,4,21]]},"DOI":"10.1145\/3447786.3456233","type":"proceedings-article","created":{"date-parts":[[2021,4,22]],"date-time":"2021-04-22T06:18:11Z","timestamp":1619072291000},"update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":64,"title":["DGCL"],"prefix":"10.1145","author":[{"given":"Zhenkun","family":"Cai","sequence":"first","affiliation":[{"name":"The Chinese University of Hong Kong"}]},{"given":"Xiao","family":"Yan","sequence":"additional","affiliation":[{"name":"Southern University of Science and Technology"}]},{"given":"Yidi","family":"Wu","sequence":"additional","affiliation":[{"name":"The Chinese University of Hong Kong"}]},{"given":"Kaihao","family":"Ma","sequence":"additional","affiliation":[{"name":"The Chinese University of Hong Kong"}]},{"given":"James","family":"Cheng","sequence":"additional","affiliation":[{"name":"The Chinese University of Hong Kong"}]},{"given":"Fan","family":"Yu","sequence":"additional","affiliation":[{"name":"Huawei Technologies Co. Ltd"}]}],"member":"320","published-online":{"date-parts":[[2021,4,21]]},"reference":[{"key":"e_1_3_2_1_1_1","volume-title":"12th USENIX symposium on operating systems design and implementation (OSDI 16)","author":"Abadi Mart\u00edn","year":"2016","unstructured":"Mart\u00edn Abadi , Paul Barham , Jianmin Chen , Zhifeng Chen , Andy Davis , Jeffrey Dean , Matthieu Devin , Sanjay Ghemawat , Geoffrey Irving , Michael Isard , 2016 . Tensorflow: A system for large-scale machine learning . In 12th USENIX symposium on operating systems design and implementation (OSDI 16) . 265--283. Mart\u00edn Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. 2016. Tensorflow: A system for large-scale machine learning. In 12th USENIX symposium on operating systems design and implementation (OSDI 16). 265--283."},{"key":"e_1_3_2_1_2_1","doi-asserted-by":"publisher","DOI":"10.1145\/3155284.3018756"},{"key":"e_1_3_2_1_3_1","doi-asserted-by":"publisher","DOI":"10.1142\/S012962649300037X"},{"key":"e_1_3_2_1_4_1","doi-asserted-by":"publisher","DOI":"10.1145\/2637166.2637236"},{"key":"e_1_3_2_1_5_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.comnet.2013.05.012"},{"key":"e_1_3_2_1_6_1","volume-title":"Proceedings of the Conference on Systems and Machine Learning (SysML).","author":"Cho Minsik","year":"2019","unstructured":"Minsik Cho , Ulrich Finkler , and David Kung . 2019 . BlueConnect: Novel Hierarchical All-Reduce on Multi-tired Network for Deep Learning . In Proceedings of the Conference on Systems and Machine Learning (SysML). Minsik Cho, Ulrich Finkler, and David Kung. 2019. BlueConnect: Novel Hierarchical All-Reduce on Multi-tired Network for Deep Learning. In Proceedings of the Conference on Systems and Machine Learning (SysML)."},{"key":"e_1_3_2_1_7_1","volume-title":"Fast graph representation learning with PyTorch Geometric. arXiv preprint arXiv:1903.02428","author":"Fey Matthias","year":"2019","unstructured":"Matthias Fey and Jan Eric Lenssen . 2019. Fast graph representation learning with PyTorch Geometric. arXiv preprint arXiv:1903.02428 ( 2019 ). Matthias Fey and Jan Eric Lenssen. 2019. Fast graph representation learning with PyTorch Geometric. arXiv preprint arXiv:1903.02428 (2019)."},{"key":"e_1_3_2_1_8_1","unstructured":"Will Hamilton Zhitao Ying and Jure Leskovec. 2017. Inductive representation learning on large graphs. In Advances in neural information processing systems. 1024--1034. Will Hamilton Zhitao Ying and Jure Leskovec. 2017. Inductive representation learning on large graphs. In Advances in neural information processing systems. 1024--1034."},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"e_1_3_2_1_10_1","volume-title":"Deep convolutional networks on graph-structured data. arXiv preprint arXiv:1506.05163","author":"Henaff Mikael","year":"2015","unstructured":"Mikael Henaff , Joan Bruna , and Yann LeCun . 2015. Deep convolutional networks on graph-structured data. arXiv preprint arXiv:1506.05163 ( 2015 ). Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep convolutional networks on graph-structured data. arXiv preprint arXiv:1506.05163 (2015)."},{"key":"e_1_3_2_1_11_1","unstructured":"Huawei. 2020. MindSpore. https:\/\/e.huawei.com\/us\/products\/cloud-computing-dc\/atlas\/mindspore. Huawei. 2020. MindSpore. https:\/\/e.huawei.com\/us\/products\/cloud-computing-dc\/atlas\/mindspore."},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.14778\/3157794.3157799"},{"key":"e_1_3_2_1_13_1","volume-title":"Proceedings of Machine Learning and Systems (MLSys)","author":"Jia Zhihao","year":"2020","unstructured":"Zhihao Jia , Sina Lin , Mingyu Gao , Matei Zaharia , and Alex Aiken . 2020 . Improving the accuracy, scalability, and performance of graph neural networks with roc . Proceedings of Machine Learning and Systems (MLSys) (2020), 187--198. Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken. 2020. Improving the accuracy, scalability, and performance of graph neural networks with roc. Proceedings of Machine Learning and Systems (MLSys) (2020), 187--198."},{"key":"e_1_3_2_1_14_1","volume-title":"METIS: Unstructured graph partitioning and sparse matrix ordering system. Technical report","author":"Karypis George","year":"1997","unstructured":"George Karypis . 1997 . METIS: Unstructured graph partitioning and sparse matrix ordering system. Technical report (1997). George Karypis. 1997. METIS: Unstructured graph partitioning and sparse matrix ordering system. Technical report (1997)."},{"key":"e_1_3_2_1_15_1","doi-asserted-by":"publisher","DOI":"10.5555\/305219.305248"},{"key":"e_1_3_2_1_16_1","doi-asserted-by":"publisher","DOI":"10.1145\/2882903.2915204"},{"key":"e_1_3_2_1_17_1","volume-title":"Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907","author":"Kipf Thomas N","year":"2016","unstructured":"Thomas N Kipf and Max Welling . 2016. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 ( 2016 ). Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)."},{"key":"e_1_3_2_1_18_1","doi-asserted-by":"publisher","DOI":"10.1145\/1753326.1753532"},{"key":"e_1_3_2_1_19_1","doi-asserted-by":"publisher","DOI":"10.1080\/15427951.2009.10129177"},{"key":"e_1_3_2_1_20_1","volume-title":"Gated graph sequence neural networks. arXiv preprint arXiv:1511.05493","author":"Li Yujia","year":"2015","unstructured":"Yujia Li , Daniel Tarlow , Marc Brockschmidt , and Richard Zemel . 2015. Gated graph sequence neural networks. arXiv preprint arXiv:1511.05493 ( 2015 ). Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2015. Gated graph sequence neural networks. arXiv preprint arXiv:1511.05493 (2015)."},{"key":"e_1_3_2_1_21_1","volume-title":"2019 USENIX Annual Technical Conference (USENIX ATC 19)","author":"Ma Lingxiao","year":"2019","unstructured":"Lingxiao Ma , Zhi Yang , Youshan Miao , Jilong Xue , Ming Wu , Lidong Zhou , and Yafei Dai . 2019 . Neugraph: parallel deep neural network computation on large graphs . In 2019 USENIX Annual Technical Conference (USENIX ATC 19) . 443--458. Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong Zhou, and Yafei Dai. 2019. Neugraph: parallel deep neural network computation on large graphs. In 2019 USENIX Annual Technical Conference (USENIX ATC 19). 443--458."},{"key":"e_1_3_2_1_22_1","volume-title":"DGX Systems. https:\/\/www.nvidia.com\/en-sg\/data-center\/dgx-systems. [Online","author":"NVIDIA.","year":"2020","unstructured":"NVIDIA. 2020. DGX Systems. https:\/\/www.nvidia.com\/en-sg\/data-center\/dgx-systems. [Online ; accessed 8- Oct- 2020 ]. NVIDIA. 2020. DGX Systems. https:\/\/www.nvidia.com\/en-sg\/data-center\/dgx-systems. [Online; accessed 8-Oct-2020]."},{"key":"e_1_3_2_1_23_1","volume-title":"https:\/\/docs.nvidia.com\/cuda\/gpudirect-rdma. [Online","author":"NVIDIA.","year":"2020","unstructured":"NVIDIA. 2020. GPUDirect RDMA. https:\/\/docs.nvidia.com\/cuda\/gpudirect-rdma. [Online ; accessed 8- Oct- 2020 ]. NVIDIA. 2020. GPUDirect RDMA. https:\/\/docs.nvidia.com\/cuda\/gpudirect-rdma. [Online; accessed 8-Oct-2020]."},{"key":"e_1_3_2_1_24_1","volume-title":"NVIDIA Collective communications library (NCCL). https:\/\/https:\/\/developer.nvidia.com\/nccl. [Online","author":"NVIDIA.","year":"2020","unstructured":"NVIDIA. 2020. NVIDIA Collective communications library (NCCL). https:\/\/https:\/\/developer.nvidia.com\/nccl. [Online ; accessed 8- Oct- 2020 ]. NVIDIA. 2020. NVIDIA Collective communications library (NCCL). https:\/\/https:\/\/developer.nvidia.com\/nccl. [Online; accessed 8-Oct-2020]."},{"key":"e_1_3_2_1_25_1","volume-title":"https:\/\/www.nvidia.com\/en-sg\/data-center\/nvlink. [Online","author":"Link NVIDIA.","year":"2020","unstructured":"NVIDIA. 2020. NV Link and NVSwitch. https:\/\/www.nvidia.com\/en-sg\/data-center\/nvlink. [Online ; accessed 8- Oct- 2020 ]. NVIDIA. 2020. NVLink and NVSwitch. https:\/\/www.nvidia.com\/en-sg\/data-center\/nvlink. [Online; accessed 8-Oct-2020]."},{"key":"e_1_3_2_1_26_1","doi-asserted-by":"publisher","DOI":"10.1109\/IPDPS.2017.117"},{"key":"e_1_3_2_1_27_1","volume-title":"Pytorch: An imperative style, high-performance deep learning library. In Advances in neural information processing systems. 8026--8037.","author":"Paszke Adam","year":"2019","unstructured":"Adam Paszke , Sam Gross , Francisco Massa , Adam Lerer , James Bradbury , Gregory Chanan , Trevor Killeen , Zeming Lin , Natalia Gimelshein , Luca Antiga , 2019 . Pytorch: An imperative style, high-performance deep learning library. In Advances in neural information processing systems. 8026--8037. Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style, high-performance deep learning library. In Advances in neural information processing systems. 8026--8037."},{"key":"e_1_3_2_1_28_1","doi-asserted-by":"publisher","DOI":"10.1109\/IPDPS.2007.370405"},{"key":"e_1_3_2_1_29_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jpdc.2008.09.002"},{"key":"e_1_3_2_1_30_1","doi-asserted-by":"publisher","DOI":"10.1145\/2517349.2522740"},{"key":"e_1_3_2_1_31_1","volume-title":"Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556","author":"Simonyan Karen","year":"2014","unstructured":"Karen Simonyan and Andrew Zisserman . 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 ( 2014 ). Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)."},{"key":"e_1_3_2_1_32_1","volume-title":"Learning Multiagent Communication with Backpropagation. In Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016","author":"Sukhbaatar Sainbayar","year":"2016","unstructured":"Sainbayar Sukhbaatar , Arthur Szlam , and Rob Fergus . 2016 . Learning Multiagent Communication with Backpropagation. In Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016 , December 5-10, 2016, Barcelona, Spain, Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett (Eds.). 2244--2252. https:\/\/proceedings.neurips.cc\/paper\/ 2016\/hash\/55b1927fdafef39c48e5b73b5d61ea60-Abstract.html Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. 2016. Learning Multiagent Communication with Backpropagation. In Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett (Eds.). 2244--2252. https:\/\/proceedings.neurips.cc\/paper\/2016\/hash\/55b1927fdafef39c48e5b73b5d61ea60-Abstract.html"},{"key":"e_1_3_2_1_33_1","volume-title":"Graph attention networks. arXiv preprint arXiv:1710.10903","author":"Veli\u010dkovi\u0107 Petar","year":"2017","unstructured":"Petar Veli\u010dkovi\u0107 , Guillem Cucurull , Arantxa Casanova , Adriana Romero , Pietro Lio , and Yoshua Bengio . 2017. Graph attention networks. arXiv preprint arXiv:1710.10903 ( 2017 ). Petar Veli\u010dkovi\u0107, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)."},{"key":"e_1_3_2_1_34_1","doi-asserted-by":"publisher","DOI":"10.1016\/S0305-0548(00)00092-7"},{"key":"e_1_3_2_1_35_1","unstructured":"Minjie Wang Lingfan Yu Da Zheng Quan Gan Yu Gai Zihao Ye Mufei Li Jinjing Zhou Qi Huang Chao Ma etal 2019. Deep graph library: Towards efficient and scalable deep learning on graphs. arXiv preprint arXiv:1909.01315 (2019). Minjie Wang Lingfan Yu Da Zheng Quan Gan Yu Gai Zihao Ye Mufei Li Jinjing Zhou Qi Huang Chao Ma et al. 2019. Deep graph library: Towards efficient and scalable deep learning on graphs. arXiv preprint arXiv:1909.01315 (2019)."},{"key":"e_1_3_2_1_36_1","volume-title":"https:\/\/en.wikipedia.org\/wiki\/InfiniBand. [Online","year":"2020","unstructured":"Wikipedia. 2020. InfiniBand. https:\/\/en.wikipedia.org\/wiki\/InfiniBand. [Online ; accessed 8- Oct- 2020 ]. Wikipedia. 2020. InfiniBand. https:\/\/en.wikipedia.org\/wiki\/InfiniBand. [Online; accessed 8-Oct-2020]."},{"key":"e_1_3_2_1_37_1","volume-title":"Steiner tree problem. https:\/\/en.wikipedia.org\/wiki\/Steiner_tree_problem. [Online","year":"2020","unstructured":"Wikipedia. 2020. Steiner tree problem. https:\/\/en.wikipedia.org\/wiki\/Steiner_tree_problem. [Online ; accessed 8- Oct- 2020 ]. Wikipedia. 2020. Steiner tree problem. https:\/\/en.wikipedia.org\/wiki\/Steiner_tree_problem. [Online; accessed 8-Oct-2020]."},{"key":"e_1_3_2_1_38_1","doi-asserted-by":"publisher","DOI":"10.1145\/3447786.3456247"},{"key":"e_1_3_2_1_39_1","volume-title":"How powerful are graph neural networks? arXiv preprint arXiv:1810.00826","author":"Xu Keyulu","year":"2018","unstructured":"Keyulu Xu , Weihua Hu , Jure Leskovec , and Stefanie Jegelka . 2018. How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 ( 2018 ). Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018)."},{"key":"e_1_3_2_1_40_1","doi-asserted-by":"publisher","DOI":"10.1145\/3292500.3340404"},{"key":"e_1_3_2_1_41_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10115-013-0693-z"},{"key":"e_1_3_2_1_42_1","doi-asserted-by":"publisher","DOI":"10.1145\/3297858.3304029"},{"key":"e_1_3_2_1_43_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPDS.2013.111"}],"event":{"name":"EuroSys '21: Sixteenth European Conference on Computer Systems","location":"Online Event United Kingdom","acronym":"EuroSys '21","sponsor":["SIGOPS ACM Special Interest Group on Operating Systems"]},"container-title":["Proceedings of the Sixteenth European Conference on Computer Systems"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3447786.3456233","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,11]],"date-time":"2023-01-11T21:23:32Z","timestamp":1673472212000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3447786.3456233"}},"subtitle":["an efficient communication library for distributed GNN training"],"short-title":[],"issued":{"date-parts":[[2021,4,21]]},"references-count":43,"alternative-id":["10.1145\/3447786.3456233","10.1145\/3447786"],"URL":"https:\/\/doi.org\/10.1145\/3447786.3456233","relation":{},"subject":[],"published":{"date-parts":[[2021,4,21]]},"assertion":[{"value":"2021-04-21","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}