{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T21:22:11Z","timestamp":1730323331493,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":19,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2021,6,22]]},"DOI":"10.1145\/3447555.3466592","type":"proceedings-article","created":{"date-parts":[[2021,6,23]],"date-time":"2021-06-23T00:49:35Z","timestamp":1624409375000},"page":"499-506","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":1,"title":["Additive Gaussian process prediction for electrical loads compared with deep learning models"],"prefix":"10.1145","author":[{"given":"Yifu","family":"Ding","sequence":"first","affiliation":[{"name":"Energy and Power Group, Department of Engineering Science, Oxford, UK"}]},{"given":"Malcolm","family":"McCulloch","sequence":"additional","affiliation":[{"name":"Energy and Power Group, Department of Engineering Science, Oxford, UK"}]}],"member":"320","published-online":{"date-parts":[[2021,6,22]]},"reference":[{"key":"e_1_3_2_1_1_1","volume-title":"Jez Wingfield, Chris Martin, Andy Stone, and Robert Lowe.","author":"Love Jenny","year":"2017","unstructured":"Jenny Love , Andrew Z.P. Smith , Stephen Watson , Eleni Oikonomou , Alex Summerfield , Colin Gleeson , Phillip Biddulph , Lai Fong Chiu , Jez Wingfield, Chris Martin, Andy Stone, and Robert Lowe. 2017 . The addition of heat pump electricity load profiles to GB electricity demand: Evidence from a heat pump field trial. Applied energy. issn: 03062619. doi: 10.1016\/j.apenergy.2017.07.026. Jenny Love, Andrew Z.P. Smith, Stephen Watson, Eleni Oikonomou, Alex Summerfield, Colin Gleeson, Phillip Biddulph, Lai Fong Chiu, Jez Wingfield, Chris Martin, Andy Stone, and Robert Lowe. 2017. The addition of heat pump electricity load profiles to GB electricity demand: Evidence from a heat pump field trial. Applied energy. issn: 03062619. doi: 10.1016\/j.apenergy.2017.07.026."},{"key":"e_1_3_2_1_2_1","volume-title":"Michael Davidson, Jan Dobschinski, Pengwei Du, Matthias Lange, Timothy Miller, Corinna Mohrlen, Amber Motley, Rui Pestana, and John Zack.","author":"Haupt Sue Ellen","year":"2019","unstructured":"Sue Ellen Haupt , Mayte Garcia Casado , Michael Davidson, Jan Dobschinski, Pengwei Du, Matthias Lange, Timothy Miller, Corinna Mohrlen, Amber Motley, Rui Pestana, and John Zack. 2019 . The use of probabilistic forecasts: Applying them in theory and practice. Ieee power and energy magazine. issn: 15584216. doi: 10.1109\/MPE.2019.2932639. Sue Ellen Haupt, Mayte Garcia Casado, Michael Davidson, Jan Dobschinski, Pengwei Du, Matthias Lange, Timothy Miller, Corinna Mohrlen, Amber Motley, Rui Pestana, and John Zack. 2019. The use of probabilistic forecasts: Applying them in theory and practice. Ieee power and energy magazine. issn: 15584216. doi: 10.1109\/MPE.2019.2932639."},{"volume-title":"Data Study Group Final Report: Telenor. Technical report","author":"Data Study Group Team. 2020.","key":"e_1_3_2_1_3_1","unstructured":"Data Study Group Team. 2020. Data Study Group Final Report: Telenor. Technical report . The Alan Turing Institute , London . http:\/\/doi.org\/10.5281\/zenodo.3786852. Data Study Group Team. 2020. Data Study Group Final Report: Telenor. Technical report. The Alan Turing Institute, London. http:\/\/doi.org\/10.5281\/zenodo.3786852."},{"key":"e_1_3_2_1_4_1","doi-asserted-by":"crossref","unstructured":"Mahmoud Shepero Dennis van der Meer Joakim Munkhammar and Joakim Wid\u00e9n. 2018. Residential probabilistic load forecasting: A method using Gaussian process designed for electric load data. Applied energy. issn: 03062619. doi: 10.1016\/j.apenergy.2018.02.165. Mahmoud Shepero Dennis van der Meer Joakim Munkhammar and Joakim Wid\u00e9n. 2018. Residential probabilistic load forecasting: A method using Gaussian process designed for electric load data. Applied energy. issn: 03062619. doi: 10.1016\/j.apenergy.2018.02.165.","DOI":"10.1016\/j.apenergy.2018.02.165"},{"key":"e_1_3_2_1_5_1","doi-asserted-by":"crossref","unstructured":"Tianyi Li Yi Wang and Ning Zhang. 2020. Combining Probability Density Forecasts for Power Electrical Loads. Ieee transactions on smart grid 11 2 1679--1690. issn: 19493061. doi: 10.1109\/TSG.2019.2942024. Tianyi Li Yi Wang and Ning Zhang. 2020. Combining Probability Density Forecasts for Power Electrical Loads. Ieee transactions on smart grid 11 2 1679--1690. issn: 19493061. doi: 10.1109\/TSG.2019.2942024.","DOI":"10.1109\/TSG.2019.2942024"},{"key":"e_1_3_2_1_6_1","doi-asserted-by":"crossref","unstructured":"Shu Zhang Yi Wang Yutian Zhang Dan Wang and Ning Zhang. 2020. Load probability density forecasting by transforming and combining quantile forecasts. Applied energy 277 115600. issn: 03062619. doi: 10.1016\/j.apenergy.2020.115600.htttps:\/\/doi.org\/10.1016\/j.apenergy.2020.115600. Shu Zhang Yi Wang Yutian Zhang Dan Wang and Ning Zhang. 2020. Load probability density forecasting by transforming and combining quantile forecasts. Applied energy 277 115600. issn: 03062619. doi: 10.1016\/j.apenergy.2020.115600.htttps:\/\/doi.org\/10.1016\/j.apenergy.2020.115600.","DOI":"10.1016\/j.apenergy.2020.115600"},{"key":"e_1_3_2_1_7_1","unstructured":"Balaji Lakshminarayanan Alexander Pritzel and Charles Blundell. 2017. Simple and scalable predictive uncertainty estimation using deep ensembles. In Advances in neural information processing systems. arXiv: 1612.01474. Balaji Lakshminarayanan Alexander Pritzel and Charles Blundell. 2017. Simple and scalable predictive uncertainty estimation using deep ensembles. In Advances in neural information processing systems. arXiv: 1612.01474."},{"key":"e_1_3_2_1_8_1","doi-asserted-by":"crossref","unstructured":"Guangrui Xie Xi Chen and Yang Weng. 2018. An integrated Gaussian process modeling framework for residential load prediction. Ieee transactions on power systems. issn: 08858950. doi: 10.1109\/TPWRS.2018.2851929. Guangrui Xie Xi Chen and Yang Weng. 2018. An integrated Gaussian process modeling framework for residential load prediction. Ieee transactions on power systems. issn: 08858950. doi: 10.1109\/TPWRS.2018.2851929.","DOI":"10.1109\/TPWRS.2018.2851929"},{"key":"e_1_3_2_1_9_1","volume-title":"Additive Gaussian processes. Advances in neural information processing systems 24: 25th annual conference on neural information processing systems","author":"Duvenaud David","year":"2011","unstructured":"David Duvenaud , Hannes Nickisch , and Carl Edward Rasmussen . 2011. Additive Gaussian processes. Advances in neural information processing systems 24: 25th annual conference on neural information processing systems 2011 , nips 2011, 1--9. arXiv: 1112.4394. David Duvenaud, Hannes Nickisch, and Carl Edward Rasmussen. 2011. Additive Gaussian processes. Advances in neural information processing systems 24: 25th annual conference on neural information processing systems 2011, nips 2011, 1--9. arXiv: 1112.4394."},{"key":"e_1_3_2_1_10_1","doi-asserted-by":"crossref","unstructured":"Lu Cheng Siddharth Ramchandran Tommi Vatanen Niina Lietz\u00e9n Riitta Lahesmaa Aki Vehtari and Harri L\u00e4hdesm\u00e4ki. 2019. An additive Gaussian process regression model for interpretable non-parametric analysis of longitudinal data. Nature communications. issn: 20411723. doi: 10.1038\/s41467-019-09785-8. Lu Cheng Siddharth Ramchandran Tommi Vatanen Niina Lietz\u00e9n Riitta Lahesmaa Aki Vehtari and Harri L\u00e4hdesm\u00e4ki. 2019. An additive Gaussian process regression model for interpretable non-parametric analysis of longitudinal data. Nature communications. issn: 20411723. doi: 10.1038\/s41467-019-09785-8.","DOI":"10.1038\/s41467-019-09785-8"},{"key":"e_1_3_2_1_11_1","article-title":"Probabilistic forecasts, calibration and sharpness","volume":"10","author":"Gneiting Tilmann","year":"2007","unstructured":"Tilmann Gneiting , Fadoua Balabdaoui , and Adrian E. Raftery . 2007 . Probabilistic forecasts, calibration and sharpness . Journal of the royal statistical society. series b: statistical methodology. issn: 13697412. doi : 10 .1111\/j.1467-9868.2007.00587.x. Tilmann Gneiting, Fadoua Balabdaoui, and Adrian E. Raftery. 2007. Probabilistic forecasts, calibration and sharpness. Journal of the royal statistical society. series b: statistical methodology. issn: 13697412. doi: 10.1111\/j.1467-9868.2007.00587.x.","journal-title":"Journal of the royal statistical society. series b: statistical methodology. issn: 13697412. doi"},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"crossref","unstructured":"Jakub Nowotarski and Rafa\u0142 Weron. 2018. Recent advances in electricity price forecasting: A review of probabilistic forecasting. (2018). doi: 10.1016\/j.rser.2017.05.234. Jakub Nowotarski and Rafa\u0142 Weron. 2018. Recent advances in electricity price forecasting: A review of probabilistic forecasting. (2018). doi: 10.1016\/j.rser.2017.05.234.","DOI":"10.1016\/j.rser.2017.05.234"},{"key":"e_1_3_2_1_13_1","unstructured":"UK Power Networks. 2015. Validation of Photovoltaic (PV) Connection Assessment Tool. Technical report 89. https:\/\/www.ofgem.gov.uk\/ofgem-publications\/93938\/pvtoolcdrfinal-pdf. UK Power Networks. 2015. Validation of Photovoltaic (PV) Connection Assessment Tool. Technical report 89. https:\/\/www.ofgem.gov.uk\/ofgem-publications\/93938\/pvtoolcdrfinal-pdf."},{"key":"e_1_3_2_1_14_1","doi-asserted-by":"crossref","unstructured":"Matthias Seeger. 2004. Gaussian processes for machine learning. (2004). doi: 10.1142\/S0129065704001899. Matthias Seeger. 2004. Gaussian processes for machine learning. (2004). doi: 10.1142\/S0129065704001899.","DOI":"10.1142\/S0129065704001899"},{"key":"e_1_3_2_1_15_1","doi-asserted-by":"crossref","unstructured":"Isabelle Roesch and Tobias G\u00fcnther. 2019. Visualization of Neural Network Predictions for Weather Forecasting. Computer graphics forum. issn: 14678659. doi: 10.1111\/cgf.13453. Isabelle Roesch and Tobias G\u00fcnther. 2019. Visualization of Neural Network Predictions for Weather Forecasting. Computer graphics forum. issn: 14678659. doi: 10.1111\/cgf.13453.","DOI":"10.1111\/cgf.13453"},{"key":"e_1_3_2_1_16_1","volume-title":"Time series forecasting using lstm networks: A symbolic approach. (2020). arXiv","author":"Elsworth Steven","year":"2003","unstructured":"Steven Elsworth and Stefan G\u00fcttel . 2020. Time series forecasting using lstm networks: A symbolic approach. (2020). arXiv : 2003 .05672. Steven Elsworth and Stefan G\u00fcttel. 2020. Time series forecasting using lstm networks: A symbolic approach. (2020). arXiv: 2003.05672."},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"crossref","unstructured":"Tae Young Kim and Sung Bae Cho. 2019. Predicting residential energy consumption using CNN-LSTM neural networks. Energy. issn: 03605442. doi: 10.1016\/j.energy.2019.05.230. Tae Young Kim and Sung Bae Cho. 2019. Predicting residential energy consumption using CNN-LSTM neural networks. Energy. issn: 03605442. doi: 10.1016\/j.energy.2019.05.230.","DOI":"10.1016\/j.energy.2019.05.230"},{"key":"e_1_3_2_1_18_1","doi-asserted-by":"crossref","unstructured":"Haixiang Zang Ling Liu Li Sun Lilin Cheng Zhinong Wei and Guoqiang Sun. 2020. Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations. Renewable energy. issn: 18790682. doi: 10.1016\/j.renene.2020.05.150. Haixiang Zang Ling Liu Li Sun Lilin Cheng Zhinong Wei and Guoqiang Sun. 2020. Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations. Renewable energy. issn: 18790682. doi: 10.1016\/j.renene.2020.05.150.","DOI":"10.1016\/j.renene.2020.05.150"},{"key":"e_1_3_2_1_19_1","volume-title":"33rd international conference on machine learning, icml","author":"Gal Yarin","year":"2016","unstructured":"Yarin Gal and Zoubin Ghahramani . 2016 . Dropout as a Bayesian approximation: Representing model uncertainty in deep learning . In 33rd international conference on machine learning, icml 2016. isbn: 9781510829008. arXiv: 1506.02142. Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. In 33rd international conference on machine learning, icml 2016. isbn: 9781510829008. arXiv: 1506.02142."}],"event":{"name":"e-Energy '21: The Twelfth ACM International Conference on Future Energy Systems","acronym":"e-Energy '21","location":"Virtual Event Italy"},"container-title":["Proceedings of the Twelfth ACM International Conference on Future Energy Systems"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3447555.3466592","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,13]],"date-time":"2023-01-13T02:54:39Z","timestamp":1673578479000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3447555.3466592"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6,22]]},"references-count":19,"alternative-id":["10.1145\/3447555.3466592","10.1145\/3447555"],"URL":"https:\/\/doi.org\/10.1145\/3447555.3466592","relation":{},"subject":[],"published":{"date-parts":[[2021,6,22]]},"assertion":[{"value":"2021-06-22","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}