{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,2]],"date-time":"2024-09-02T13:10:10Z","timestamp":1725282610191},"publisher-location":"New York, NY, USA","reference-count":26,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2021,6,22]]},"DOI":"10.1145\/3447555.3466590","type":"proceedings-article","created":{"date-parts":[[2021,6,23]],"date-time":"2021-06-23T04:49:35Z","timestamp":1624423775000},"page":"488-492","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":2,"title":["Adapting Surprise Minimizing Reinforcement Learning Techniques for Transactive Control"],"prefix":"10.1145","author":[{"given":"William","family":"Arnold","sequence":"first","affiliation":[{"name":"Electrical Engineering and Computer Sciences, University of California, Berkeley"}]},{"given":"Tarang","family":"Srivastava","sequence":"additional","affiliation":[{"name":"Electrical Engineering and Computer Sciences, University of California, Berkeley"}]},{"given":"Lucas","family":"Spangher","sequence":"additional","affiliation":[{"name":"Electrical Engineering and Computer Sciences, University of California, Berkeley"}]},{"given":"Utkarsha","family":"Agwan","sequence":"additional","affiliation":[{"name":"Electrical Engineering and Computer Sciences, University of California, Berkeley"}]},{"given":"Costas","family":"Spanos","sequence":"additional","affiliation":[{"name":"Electrical Engineering and Computer Sciences, University of California, Berkeley"}]}],"member":"320","published-online":{"date-parts":[[2021,6,22]]},"reference":[{"key":"e_1_3_2_1_1_1","doi-asserted-by":"publisher","DOI":"10.1145\/3360322.3360865"},{"key":"e_1_3_2_1_2_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.epsr.2017.12.017"},{"key":"e_1_3_2_1_3_1","volume-title":"SMiRL: Surprise Minimizing RL in Dynamic Environments. CoRR abs\/1912.05510","author":"Berseth Glen","year":"2019","unstructured":"Glen Berseth , Daniel Geng , Coline Devin , Chelsea Finn , Dinesh Jayaraman , and Sergey Levine . 2019. SMiRL: Surprise Minimizing RL in Dynamic Environments. CoRR abs\/1912.05510 ( 2019 ). arXiv:1912.05510 http:\/\/arxiv.org\/abs\/1912.05510 Glen Berseth, Daniel Geng, Coline Devin, Chelsea Finn, Dinesh Jayaraman, and Sergey Levine. 2019. SMiRL: Surprise Minimizing RL in Dynamic Environments. CoRR abs\/1912.05510 (2019). arXiv:1912.05510 http:\/\/arxiv.org\/abs\/1912.05510"},{"key":"e_1_3_2_1_4_1","unstructured":"Greg Brockman Vicki Cheung Ludwig Pettersson Jonas Schneider John Schulman Jie Tang and Wojciech Zaremba. 2016. OpenAI Gym. arXiv:arXiv:1606.01540 Greg Brockman Vicki Cheung Ludwig Pettersson Jonas Schneider John Schulman Jie Tang and Wojciech Zaremba. 2016. OpenAI Gym. arXiv:arXiv:1606.01540"},{"key":"e_1_3_2_1_5_1","volume-title":"Tanya Veeravalli, Huihan Liu, and Costas J Spanos.","author":"Das Hari Prasanna","year":"2020","unstructured":"Hari Prasanna Das , Ioannis Konstantakopoulos , Aummul Baneen Manasawala , Tanya Veeravalli, Huihan Liu, and Costas J Spanos. 2020 . Do Occupants in a Building exhibit patterns in Energy Consumption? Analyzing Clusters in Energy Social Games . (2020). Hari Prasanna Das, Ioannis Konstantakopoulos, Aummul Baneen Manasawala, Tanya Veeravalli, Huihan Liu, and Costas J Spanos. 2020. Do Occupants in a Building exhibit patterns in Energy Consumption? Analyzing Clusters in Energy Social Games. (2020)."},{"key":"e_1_3_2_1_6_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICMLA.2019.00277"},{"key":"e_1_3_2_1_7_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ijepes.2012.11.023"},{"key":"e_1_3_2_1_8_1","doi-asserted-by":"publisher","DOI":"10.1109\/ISGT.2015.7131867"},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.1109\/TII.2018.2790429"},{"key":"e_1_3_2_1_10_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.apenergy.2018.03.017"},{"key":"e_1_3_2_1_11_1","volume-title":"A deep learning and gamification approach to improving human-building interaction and energy efficiency in smart infrastructure. Applied energy 237","author":"Konstantakopoulos Ioannis C","year":"2019","unstructured":"Ioannis C Konstantakopoulos , Andrew R Barkan , Shiying He , Tanya Veeravalli , Huihan Liu , and Costas Spanos . 2019. A deep learning and gamification approach to improving human-building interaction and energy efficiency in smart infrastructure. Applied energy 237 ( 2019 ), 810--821. Ioannis C Konstantakopoulos, Andrew R Barkan, Shiying He, Tanya Veeravalli, Huihan Liu, and Costas Spanos. 2019. A deep learning and gamification approach to improving human-building interaction and energy efficiency in smart infrastructure. Applied energy 237 (2019), 810--821."},{"key":"e_1_3_2_1_12_1","volume-title":"Andrew R Barkan, Shiying He, Tanya Veeravalli, Huihan Liu, Aummul Baneen Manasawala, Yu-Wen Lin, and Costas J Spanos.","author":"Konstantakopoulos Ioannis C","year":"2019","unstructured":"Ioannis C Konstantakopoulos , Hari Prasanna Das , Andrew R Barkan, Shiying He, Tanya Veeravalli, Huihan Liu, Aummul Baneen Manasawala, Yu-Wen Lin, and Costas J Spanos. 2019 . Design , benchmarking and explainability analysis of a game-theoretic framework towards energy efficiency in smart infrastructure. arXiv preprint arXiv:1910.07899 (2019). Ioannis C Konstantakopoulos, Hari Prasanna Das, Andrew R Barkan, Shiying He, Tanya Veeravalli, Huihan Liu, Aummul Baneen Manasawala, Yu-Wen Lin, and Costas J Spanos. 2019. Design, benchmarking and explainability analysis of a game-theoretic framework towards energy efficiency in smart infrastructure. arXiv preprint arXiv:1910.07899 (2019)."},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"crossref","unstructured":"Chaojie Li Chen Liu Xinghuo Yu Ke Deng Tingwen Huang and Liangchen Liu. 2018. Integrating Demand Response and Renewable Energy In Wholesale Market.. In IJCAI. 382--388. Chaojie Li Chen Liu Xinghuo Yu Ke Deng Tingwen Huang and Liangchen Liu. 2018. Integrating Demand Response and Renewable Energy In Wholesale Market.. In IJCAI. 382--388.","DOI":"10.24963\/ijcai.2018\/53"},{"key":"e_1_3_2_1_14_1","doi-asserted-by":"publisher","DOI":"10.1109\/IGESC.2014.7018632"},{"key":"e_1_3_2_1_15_1","doi-asserted-by":"publisher","DOI":"10.1109\/TIE.2014.2371780"},{"key":"e_1_3_2_1_16_1","doi-asserted-by":"publisher","DOI":"10.1109\/TII.2015.2431219"},{"key":"e_1_3_2_1_17_1","volume-title":"Battery Energy Management in a Microgrid Using Batch Reinforcement Learning. Energies 10, 11","author":"Mbuwir Brida V.","year":"2017","unstructured":"Brida V. Mbuwir , Frederik Ruelens , Fred Spiessens , and Geert Deconinck . 2017. Battery Energy Management in a Microgrid Using Batch Reinforcement Learning. Energies 10, 11 ( 2017 ). https:\/\/www.mdpi.com\/1996-1073\/10\/11\/1846 Brida V. Mbuwir, Frederik Ruelens, Fred Spiessens, and Geert Deconinck. 2017. Battery Energy Management in a Microgrid Using Batch Reinforcement Learning. Energies 10, 11 (2017). https:\/\/www.mdpi.com\/1996-1073\/10\/11\/1846"},{"key":"e_1_3_2_1_18_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.procs.2015.02.016"},{"key":"e_1_3_2_1_19_1","volume-title":"Proximal Policy Optimization Algorithms. CoRR abs\/1707.06347","author":"Schulman John","year":"2017","unstructured":"John Schulman , Filip Wolski , Prafulla Dhariwal , Alec Radford , and Oleg Klimov . 2017. Proximal Policy Optimization Algorithms. CoRR abs\/1707.06347 ( 2017 ). arXiv:1707.06347 http:\/\/arxiv.org\/abs\/1707.06347 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal Policy Optimization Algorithms. CoRR abs\/1707.06347 (2017). arXiv:1707.06347 http:\/\/arxiv.org\/abs\/1707.06347"},{"key":"e_1_3_2_1_20_1","doi-asserted-by":"publisher","DOI":"10.1145\/3427773.3427863"},{"key":"e_1_3_2_1_21_1","doi-asserted-by":"publisher","DOI":"10.1145\/3396851.3402365"},{"key":"e_1_3_2_1_22_1","volume-title":"Tackling Climate Change with Artificial Intelligence Workshop at NeurIPS","author":"Spangher Lucas","year":"2020","unstructured":"Lucas Spangher , Akash Gokul , Joseph Palakapilly , Utkarsha Agwan , Manan Khattar , Wann-Jiun Ma , and Costas Spanos . [n.d.]. OfficeLearn : An OpenAI Gym Environment for Reinforcement Learning on Occupant-Level Building's Energy Demand Response . In Tackling Climate Change with Artificial Intelligence Workshop at NeurIPS , 2020 . Lucas Spangher, Akash Gokul, Joseph Palakapilly, Utkarsha Agwan, Manan Khattar, Wann-Jiun Ma, and Costas Spanos. [n.d.]. OfficeLearn: An OpenAI Gym Environment for Reinforcement Learning on Occupant-Level Building's Energy Demand Response. In Tackling Climate Change with Artificial Intelligence Workshop at NeurIPS, 2020."},{"volume-title":"Reinforcement learning An introduction","author":"Sutton Richard S","key":"e_1_3_2_1_23_1","unstructured":"Richard S Sutton and Andrew G Barto . 2018. Reinforcement learning An introduction . MIT press . Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning An introduction. MIT press."},{"key":"e_1_3_2_1_24_1","doi-asserted-by":"publisher","DOI":"10.1109\/TIE.2014.2361485"},{"key":"e_1_3_2_1_25_1","doi-asserted-by":"publisher","DOI":"10.1109\/TSG.2013.2264970"},{"key":"e_1_3_2_1_26_1","volume-title":"IEEE INFOCOM 2014 - IEEE Conference on Computer Communications. 2643--2651","author":"Zhang Y.","year":"2014","unstructured":"Y. Zhang and M. van der Schaar. 2014. Structure-aware stochastic load management in smart grids . In IEEE INFOCOM 2014 - IEEE Conference on Computer Communications. 2643--2651 . https:\/\/doi.org\/10.1109\/INFOCOM. 2014 .6848212 Y. Zhang and M. van der Schaar. 2014. Structure-aware stochastic load management in smart grids. In IEEE INFOCOM 2014 - IEEE Conference on Computer Communications. 2643--2651. https:\/\/doi.org\/10.1109\/INFOCOM.2014.6848212"}],"event":{"name":"e-Energy '21: The Twelfth ACM International Conference on Future Energy Systems","acronym":"e-Energy '21","location":"Virtual Event Italy"},"container-title":["Proceedings of the Twelfth ACM International Conference on Future Energy Systems"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3447555.3466590","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,2]],"date-time":"2024-09-02T12:06:57Z","timestamp":1725278817000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3447555.3466590"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6,22]]},"references-count":26,"alternative-id":["10.1145\/3447555.3466590","10.1145\/3447555"],"URL":"https:\/\/doi.org\/10.1145\/3447555.3466590","relation":{},"subject":[],"published":{"date-parts":[[2021,6,22]]},"assertion":[{"value":"2021-06-22","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}