{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,6]],"date-time":"2024-09-06T22:00:15Z","timestamp":1725660015037},"publisher-location":"New York, NY, USA","reference-count":26,"publisher":"ACM","license":[{"start":{"date-parts":[[2021,6,22]],"date-time":"2021-06-22T00:00:00Z","timestamp":1624320000000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.acm.org\/publications\/policies\/copyright_policy#Background"}],"funder":[{"DOI":"10.13039\/100000015","name":"DOE U.S. Department of Energy","doi-asserted-by":"publisher","award":["3000035"],"id":[{"id":"10.13039\/100000015","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2021,6,22]]},"DOI":"10.1145\/3447555.3466588","type":"proceedings-article","created":{"date-parts":[[2021,6,23]],"date-time":"2021-06-23T00:49:35Z","timestamp":1624409375000},"page":"475-482","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":1,"title":["End-to-End Framework for Imputation and State Discovery in Longitudinal Energy Data"],"prefix":"10.1145","author":[{"given":"Alexander","family":"Ladd","sequence":"first","affiliation":[{"name":"Lawrence Livermore National Lab, Livermore, California, USA"}]},{"given":"Kwan Ho Ryan","family":"Chan","sequence":"additional","affiliation":[{"name":"Lawrence Livermore National Lab, Livermore, California, USA"}]},{"given":"Sam","family":"Nguyen","sequence":"additional","affiliation":[{"name":"Lawrence Livermore National Lab, Livermore, California, USA"}]},{"given":"Jose","family":"Cadena","sequence":"additional","affiliation":[{"name":"Lawrence Livermore National Lab, Livermore, California, USA"}]},{"given":"Brenda","family":"Ng","sequence":"additional","affiliation":[{"name":"Lawrence Livermore National Lab, Livermore, California, USA"}]}],"member":"320","published-online":{"date-parts":[[2021,6,22]]},"reference":[{"key":"e_1_3_2_1_1_1","first-page":"2461","article-title":"Distance dependent Chinese restaurant processes","author":"Blei David M","year":"2011","unstructured":"David M Blei and Peter I Frazier . 2011 . Distance dependent Chinese restaurant processes . Journal of Machine Learning Research 12 , Aug (2011), 2461 -- 2488 . David M Blei and Peter I Frazier. 2011. Distance dependent Chinese restaurant processes. Journal of Machine Learning Research 12, Aug (2011), 2461--2488.","journal-title":"Journal of Machine Learning Research 12"},{"key":"e_1_3_2_1_2_1","unstructured":"Jose Cadena Priyadip Ray and Emma Stewart. 2019. Fingerprint discovery for transformer health prognostics from micro-phasor measurements. ICML. Jose Cadena Priyadip Ray and Emma Stewart. 2019. Fingerprint discovery for transformer health prognostics from micro-phasor measurements. ICML."},{"key":"e_1_3_2_1_3_1","volume-title":"Neural ordinary differential equations. arXiv preprint arXiv:1806.07366","author":"Chen Ricky TQ","year":"2018","unstructured":"Ricky TQ Chen , Yulia Rubanova , Jesse Bettencourt , and David Duvenaud . 2018. Neural ordinary differential equations. arXiv preprint arXiv:1806.07366 ( 2018 ). Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. 2018. Neural ordinary differential equations. arXiv preprint arXiv:1806.07366 (2018)."},{"key":"e_1_3_2_1_4_1","volume-title":"Learning Neural Event Functions for Ordinary Differential Equations. International Conference on Learning Representations","author":"Chen Ricky T. Q.","year":"2021","unstructured":"Ricky T. Q. Chen , Brandon Amos , and Maximilian Nickel . 2021 . Learning Neural Event Functions for Ordinary Differential Equations. International Conference on Learning Representations (2021). Ricky T. Q. Chen, Brandon Amos, and Maximilian Nickel. 2021. Learning Neural Event Functions for Ordinary Differential Equations. International Conference on Learning Representations (2021)."},{"key":"e_1_3_2_1_5_1","volume-title":"Neural Ordinary Differential Equations. Advances in Neural Information Processing Systems","author":"Chen Ricky T. Q.","year":"2018","unstructured":"Ricky T. Q. Chen , Yulia Rubanova , Jesse Bettencourt , and David Duvenaud . 2018. Neural Ordinary Differential Equations. Advances in Neural Information Processing Systems ( 2018 ). Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. 2018. Neural Ordinary Differential Equations. Advances in Neural Information Processing Systems (2018)."},{"volume-title":"Monographs on numerical analysis.","author":"Dierckx P.","key":"e_1_3_2_1_6_1","unstructured":"P. Dierckx . 1996. Curve and surface fitting with splines . In Monographs on numerical analysis. P. Dierckx. 1996. Curve and surface fitting with splines. In Monographs on numerical analysis."},{"key":"e_1_3_2_1_7_1","doi-asserted-by":"publisher","DOI":"10.3390\/electronics9020305"},{"key":"e_1_3_2_1_8_1","doi-asserted-by":"publisher","DOI":"10.1515\/jag-2017-0029"},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.1145\/2063576.2063702"},{"key":"e_1_3_2_1_10_1","volume-title":"Neural Computation 4, 3 (05","author":"MacKay David J. C.","year":"1992","unstructured":"David J. C. MacKay . 1992. Bayesian Interpolation . Neural Computation 4, 3 (05 1992 ), 415--447. https:\/\/doi.org\/10.1162\/neco.1992.4.3.415 arXiv:https:\/\/direct.mit.edu\/neco\/article-pdf\/4\/3\/415\/812340\/neco.1992.4.3.415.pdf David J. C. MacKay. 1992. Bayesian Interpolation. Neural Computation 4, 3 (05 1992), 415--447. https:\/\/doi.org\/10.1162\/neco.1992.4.3.415 arXiv:https:\/\/direct.mit.edu\/neco\/article-pdf\/4\/3\/415\/812340\/neco.1992.4.3.415.pdf"},{"key":"e_1_3_2_1_11_1","doi-asserted-by":"publisher","DOI":"10.1109\/MPE.2018.2790818"},{"key":"e_1_3_2_1_12_1","volume-title":"Forecasting virus outbreaks with social media data via neural ordinary differential equations. medRxiv","author":"N\u00fa\u00f1ez Mat\u00edas","year":"2021","unstructured":"Mat\u00edas N\u00fa\u00f1ez , Nadia Barreiro , Rafael Barrio , and Christopher Rackauckas . 2021. Forecasting virus outbreaks with social media data via neural ordinary differential equations. medRxiv ( 2021 ). Mat\u00edas N\u00fa\u00f1ez, Nadia Barreiro, Rafael Barrio, and Christopher Rackauckas. 2021. Forecasting virus outbreaks with social media data via neural ordinary differential equations. medRxiv (2021)."},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"publisher","DOI":"10.4249\/scholarpedia.1883"},{"key":"e_1_3_2_1_14_1","volume-title":"Ricky TQ Chen, and David Duvenaud","author":"Rubanova Yulia","year":"2019","unstructured":"Yulia Rubanova , Ricky TQ Chen, and David Duvenaud . 2019 . Latent odes for irregularly-sampled time series. arXiv preprint arXiv:1907.03907 (2019). Yulia Rubanova, Ricky TQ Chen, and David Duvenaud. 2019. Latent odes for irregularly-sampled time series. arXiv preprint arXiv:1907.03907 (2019)."},{"volume-title":"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). IEEE, 1--5.","author":"Alireza","key":"e_1_3_2_1_15_1","unstructured":"Alireza Shahsavari et al. 2017. A data-driven analysis of capacitor bank operation at a distribution feeder using micro-PMU data . In 2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). IEEE, 1--5. Alireza Shahsavari et al. 2017. A data-driven analysis of capacitor bank operation at a distribution feeder using micro-PMU data. In 2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). IEEE, 1--5."},{"key":"e_1_3_2_1_16_1","doi-asserted-by":"publisher","DOI":"10.1109\/TSG.2019.2898676"},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"publisher","DOI":"10.1109\/SmartGridComm.2016.7778806"},{"key":"e_1_3_2_1_18_1","volume-title":"Stekhoven and Peter B\u00fchlmann","author":"Daniel","year":"2011","unstructured":"Daniel J. Stekhoven and Peter B\u00fchlmann . 2011 . MissForest---non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 1 (10 2011), 112--118. https:\/\/doi.org\/10.1093\/bioinformatics\/btr597 arXiv:https:\/\/academic.oup.com\/bioinformatics\/article-pdf\/28\/1\/112\/583703\/btr597.pdf Daniel J. Stekhoven and Peter B\u00fchlmann. 2011. MissForest---non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 1 (10 2011), 112--118. https:\/\/doi.org\/10.1093\/bioinformatics\/btr597 arXiv:https:\/\/academic.oup.com\/bioinformatics\/article-pdf\/28\/1\/112\/583703\/btr597.pdf"},{"key":"e_1_3_2_1_19_1","unstructured":"Emma Stewart Anna Liao and Ciaran Roberts. 2016. Open μPMU: A real world reference distribution micro-phasor measurement unit data set for research and application development. (2016). Emma Stewart Anna Liao and Ciaran Roberts. 2016. Open μPMU: A real world reference distribution micro-phasor measurement unit data set for research and application development. (2016)."},{"key":"e_1_3_2_1_20_1","doi-asserted-by":"publisher","DOI":"10.1257\/jep.15.4.101"},{"key":"e_1_3_2_1_21_1","doi-asserted-by":"publisher","DOI":"10.1198\/016214506000000302"},{"key":"e_1_3_2_1_22_1","doi-asserted-by":"publisher","DOI":"10.1007\/s40565-018-0455-8"},{"key":"e_1_3_2_1_23_1","doi-asserted-by":"publisher","DOI":"10.5555\/1756006.1953024"},{"key":"e_1_3_2_1_24_1","doi-asserted-by":"publisher","DOI":"10.1038\/s41592-019-0686-2"},{"key":"e_1_3_2_1_25_1","volume-title":"Ziyad Edher, Minh Duc Hoang, Shion Fujimori, Sornnujah Kathirgamanathan, and Jesse Bettencourt.","author":"Wang Yuchen","year":"2020","unstructured":"Yuchen Wang , Matthieu Chan Chee , Ziyad Edher, Minh Duc Hoang, Shion Fujimori, Sornnujah Kathirgamanathan, and Jesse Bettencourt. 2020 . Forecasting Black Sigatoka Infection Risks with Latent Neural ODEs . arXiv preprint arXiv:2012.00752 (2020). Yuchen Wang, Matthieu Chan Chee, Ziyad Edher, Minh Duc Hoang, Shion Fujimori, Sornnujah Kathirgamanathan, and Jesse Bettencourt. 2020. Forecasting Black Sigatoka Infection Risks with Latent Neural ODEs. arXiv preprint arXiv:2012.00752 (2020)."},{"key":"e_1_3_2_1_26_1","doi-asserted-by":"publisher","DOI":"10.1049\/iet-gtd.2018.5898"}],"event":{"name":"e-Energy '21: The Twelfth ACM International Conference on Future Energy Systems","acronym":"e-Energy '21","location":"Virtual Event Italy"},"container-title":["Proceedings of the Twelfth ACM International Conference on Future Energy Systems"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3447555.3466588","content-type":"application\/pdf","content-version":"vor","intended-application":"syndication"},{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3447555.3466588","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,13]],"date-time":"2023-01-13T02:53:57Z","timestamp":1673578437000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3447555.3466588"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6,22]]},"references-count":26,"alternative-id":["10.1145\/3447555.3466588","10.1145\/3447555"],"URL":"https:\/\/doi.org\/10.1145\/3447555.3466588","relation":{},"subject":[],"published":{"date-parts":[[2021,6,22]]},"assertion":[{"value":"2021-06-22","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}