{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T01:07:43Z","timestamp":1740100063777,"version":"3.37.3"},"publisher-location":"New York, NY, USA","reference-count":27,"publisher":"ACM","license":[{"start":{"date-parts":[[2021,6,22]],"date-time":"2021-06-22T00:00:00Z","timestamp":1624320000000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.acm.org\/publications\/policies\/copyright_policy#Background"}],"funder":[{"name":"US army research office","award":["W911NF1910362"]},{"DOI":"10.13039\/100000001","name":"National Science Foundation","doi-asserted-by":"publisher","award":["2009057"],"id":[{"id":"10.13039\/100000001","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2021,6,22]]},"DOI":"10.1145\/3447555.3466586","type":"proceedings-article","created":{"date-parts":[[2021,6,23]],"date-time":"2021-06-23T04:49:35Z","timestamp":1624423775000},"page":"458-465","update-policy":"https:\/\/doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":15,"title":["Spatio-Temporal Missing Data Imputation for Smart Power Grids"],"prefix":"10.1145","author":[{"given":"Sanmukh R.","family":"Kuppannagari","sequence":"first","affiliation":[{"name":"Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California"}]},{"given":"Yao","family":"Fu","sequence":"additional","affiliation":[{"name":"Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California"}]},{"given":"Chung Ming","family":"Chueng","sequence":"additional","affiliation":[{"name":"Department of Computer Science, University of Southern California, Los Angeles, California"}]},{"given":"Viktor K.","family":"Prasanna","sequence":"additional","affiliation":[{"name":"Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California"}]}],"member":"320","published-online":{"date-parts":[[2021,6,22]]},"reference":[{"key":"e_1_3_2_1_1_1","volume-title":"Enhancing the missing data imputation of primary substation load demand records. Sustainable Energy, Grids and Networks","author":"Borges Cruz E","year":"2020","unstructured":"Cruz E Borges , Oihane Kamara-Esteban , Tony Castillo-Calzadilla , Cristina Martin , and Ainhoa Alonso-Vicario . 2020. Enhancing the missing data imputation of primary substation load demand records. Sustainable Energy, Grids and Networks ( 2020 ), 100369. Cruz E Borges, Oihane Kamara-Esteban, Tony Castillo-Calzadilla, Cristina Martin, and Ainhoa Alonso-Vicario. 2020. Enhancing the missing data imputation of primary substation load demand records. Sustainable Energy, Grids and Networks (2020), 100369."},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_2_1","DOI":"10.1109\/NAPS46351.2019.8999982"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_3_1","DOI":"10.1109\/ACCESS.2019.2920932"},{"key":"e_1_3_2_1_4_1","volume-title":"Multiple imputation using deep denoising autoencoders. arXiv","author":"Gondara L","year":"2017","unstructured":"L Gondara and K Wang . [n.d.]. Multiple imputation using deep denoising autoencoders. arXiv 2017 . arXiv preprint arXiv:1705.02737 ([n.d.]). L Gondara and K Wang. [n.d.]. Multiple imputation using deep denoising autoencoders. arXiv 2017. arXiv preprint arXiv:1705.02737 ([n.d.])."},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_5_1","DOI":"10.1007\/978-3-319-93040-4_21"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_6_1","DOI":"10.1109\/PES.2008.4596961"},{"key":"e_1_3_2_1_7_1","volume-title":"Long short-term memory. Neural computation 9, 8","author":"Hochreiter Sepp","year":"1997","unstructured":"Sepp Hochreiter and J\u00fcrgen Schmidhuber . 1997. Long short-term memory. Neural computation 9, 8 ( 1997 ), 1735--1780. Sepp Hochreiter and J\u00fcrgen Schmidhuber. 1997. Long short-term memory. Neural computation 9, 8 (1997), 1735--1780."},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_8_1","DOI":"10.3390\/en11061401"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_9_1","DOI":"10.3390\/en10101668"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_10_1","DOI":"10.3390\/en11010224"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_11_1","DOI":"10.1145\/3307772.3328311"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_12_1","DOI":"10.1145\/3137133.3137145"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_13_1","DOI":"10.1109\/PESGM40551.2019.8973925"},{"key":"e_1_3_2_1_14_1","volume-title":"Feifeng Jiang, Weiwei Chen, Mingzhu Wang, and Chong Zhai.","author":"Ma Jun","year":"2020","unstructured":"Jun Ma , Jack CP Cheng , Feifeng Jiang, Weiwei Chen, Mingzhu Wang, and Chong Zhai. 2020 . A bi-directional missing data imputation scheme based on LSTM and transfer learning for building energy data. Energy and Buildings ( 2020), 109941. Jun Ma, Jack CP Cheng, Feifeng Jiang, Weiwei Chen, Mingzhu Wang, and Chong Zhai. 2020. A bi-directional missing data imputation scheme based on LSTM and transfer learning for building energy data. Energy and Buildings (2020), 109941."},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_15_1","DOI":"10.1016\/j.compbiomed.2005.02.001"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_16_1","DOI":"10.1109\/TSG.2013.2259853"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_17_1","DOI":"10.1109\/ISGT.2010.5434765"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_18_1","DOI":"10.1109\/ISGT.2016.7781213"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_19_1","DOI":"10.1109\/ACCESS.2020.2976500"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_20_1","DOI":"10.3390\/en10010003"},{"key":"e_1_3_2_1_21_1","volume-title":"Missing data imputation with adversarially-trained graph convolutional networks. Neural Networks","author":"Spinelli Indro","year":"2020","unstructured":"Indro Spinelli , Simone Scardapane , and Aurelio Uncini . 2020. Missing data imputation with adversarially-trained graph convolutional networks. Neural Networks ( 2020 ). Indro Spinelli, Simone Scardapane, and Aurelio Uncini. 2020. Missing data imputation with adversarially-trained graph convolutional networks. Neural Networks (2020)."},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_22_1","DOI":"10.1093\/bioinformatics\/17.6.520"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_23_1","DOI":"10.1145\/1390156.1390294"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_24_1","DOI":"10.1109\/TSG.2016.2621135"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_25_1","DOI":"10.1145\/3366423.3380186"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_26_1","DOI":"10.1109\/TSG.2015.2512925"},{"key":"e_1_3_2_1_27_1","volume-title":"How powerful are graph neural networks? arXiv preprint arXiv:1810.00826","author":"Xu Keyulu","year":"2018","unstructured":"Keyulu Xu , Weihua Hu , Jure Leskovec , and Stefanie Jegelka . 2018. How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 ( 2018 ). Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018)."}],"event":{"acronym":"e-Energy '21","name":"e-Energy '21: The Twelfth ACM International Conference on Future Energy Systems","location":"Virtual Event Italy"},"container-title":["Proceedings of the Twelfth ACM International Conference on Future Energy Systems"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3447555.3466586","content-type":"application\/pdf","content-version":"vor","intended-application":"syndication"},{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3447555.3466586","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,13]],"date-time":"2023-01-13T07:53:44Z","timestamp":1673596424000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3447555.3466586"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6,22]]},"references-count":27,"alternative-id":["10.1145\/3447555.3466586","10.1145\/3447555"],"URL":"https:\/\/doi.org\/10.1145\/3447555.3466586","relation":{},"subject":[],"published":{"date-parts":[[2021,6,22]]},"assertion":[{"value":"2021-06-22","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}