{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T21:24:15Z","timestamp":1730323455839,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":48,"publisher":"ACM","license":[{"start":{"date-parts":[[2022,4,17]],"date-time":"2022-04-17T00:00:00Z","timestamp":1650153600000},"content-version":"vor","delay-in-days":365,"URL":"http:\/\/www.acm.org\/publications\/policies\/copyright_policy#Background"}],"funder":[{"DOI":"10.13039\/100000001","name":"National Science Foundation","doi-asserted-by":"publisher","award":["CNS 13-37732, CNS 16-24790, CCF 20-29049"],"id":[{"id":"10.13039\/100000001","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2021,4,19]]},"DOI":"10.1145\/3445814.3446739","type":"proceedings-article","created":{"date-parts":[[2021,4,11]],"date-time":"2021-04-11T13:06:26Z","timestamp":1618146386000},"page":"832-844","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":10,"title":["BayesPerf: minimizing performance monitoring errors using Bayesian statistics"],"prefix":"10.1145","author":[{"given":"Subho S.","family":"Banerjee","sequence":"first","affiliation":[{"name":"University of Illinois at Urbana-Champaign, USA"}]},{"given":"Saurabh","family":"Jha","sequence":"additional","affiliation":[{"name":"University of Illinois at Urbana-Champaign, USA"}]},{"given":"Zbigniew","family":"Kalbarczyk","sequence":"additional","affiliation":[{"name":"University of Illinois at Urbana-Champaign, USA"}]},{"given":"Ravishankar K.","family":"Iyer","sequence":"additional","affiliation":[{"name":"University of Illinois at Urbana-Champaign, USA"}]}],"member":"320","published-online":{"date-parts":[[2021,4,17]]},"reference":[{"key":"e_1_3_2_1_1_1","doi-asserted-by":"publisher","DOI":"10.1145\/258916.258924"},{"key":"e_1_3_2_1_2_1","first-page":"629","volume-title":"Proceedings of the 37th International Conference on Machine Learning (Proceedings of Machine Learning Research","volume":"119","author":"Banerjee Subho","year":"2020","unstructured":"Subho Banerjee , Saurabh Jha , Zbigniew Kalbarczyk , and Ravishankar Iyer . 2020 . Inductive-bias-driven Reinforcement Learning For Eficient Schedules in Heterogeneous Clusters . In Proceedings of the 37th International Conference on Machine Learning (Proceedings of Machine Learning Research , Vol. 119 ), Hal Daum\u00e9 III and Aarti Singh (Eds.). PMLR, Virtual , 629 - 641 . http:\/\/proceedings.mlr.press\/v119\/ banerjee20a.html Subho Banerjee, Saurabh Jha, Zbigniew Kalbarczyk, and Ravishankar Iyer. 2020. Inductive-bias-driven Reinforcement Learning For Eficient Schedules in Heterogeneous Clusters. In Proceedings of the 37th International Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 119 ), Hal Daum\u00e9 III and Aarti Singh (Eds.). PMLR, Virtual, 629-641. http:\/\/proceedings.mlr.press\/v119\/ banerjee20a.html"},{"key":"e_1_3_2_1_3_1","doi-asserted-by":"publisher","DOI":"10.1145\/3297858.3304019"},{"key":"e_1_3_2_1_4_1","doi-asserted-by":"publisher","DOI":"10.1145\/1629575.1629579"},{"key":"e_1_3_2_1_5_1","first-page":"359","volume-title":"Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining","author":"Donald","unstructured":"Donald J. Berndt and James Cliford. 1994. Using Dynamic Time Warping to Find Patterns in Time Series . In Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining ( Seattle, WA) ( AAAIWS'94). AAAI Press , 359 - 370 . Donald J. Berndt and James Cliford. 1994. Using Dynamic Time Warping to Find Patterns in Time Series. In Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining (Seattle, WA) ( AAAIWS'94). AAAI Press, 359-370."},{"key":"e_1_3_2_1_6_1","doi-asserted-by":"publisher","DOI":"10.1145\/3409963.3410492"},{"key":"e_1_3_2_1_7_1","unstructured":"Intel Corp. 2016. Intel\u00ae 64 and IA-32 Architectures Software Developer Manuals. https:\/\/software.intel.com\/en-us\/articles\/intel-sdm. Accessed 2019-03-05. Intel Corp. 2016. Intel\u00ae 64 and IA-32 Architectures Software Developer Manuals. https:\/\/software.intel.com\/en-us\/articles\/intel-sdm. Accessed 2019-03-05."},{"key":"e_1_3_2_1_8_1","doi-asserted-by":"publisher","DOI":"10.1109\/SP.2019.00021"},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.1145\/3359789.3359847"},{"key":"e_1_3_2_1_10_1","doi-asserted-by":"publisher","DOI":"10.1145\/2451116.2451125"},{"key":"e_1_3_2_1_11_1","unstructured":"Joshua V Dillon Ian Langmore Dustin Tran Eugene Brevdo Srinivas Vasudevan Dave Moore Brian Patton Alex Alemi Matt Hofman and Rif A Saurous. 2017. Tensorflow distributions. arXiv preprint arXiv:1711.10604 ( 2017 ). Joshua V Dillon Ian Langmore Dustin Tran Eugene Brevdo Srinivas Vasudevan Dave Moore Brian Patton Alex Alemi Matt Hofman and Rif A Saurous. 2017. Tensorflow distributions. arXiv preprint arXiv:1711.10604 ( 2017 )."},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1109\/SC.2016.33"},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"publisher","DOI":"10.1145\/3307650.3326633"},{"key":"e_1_3_2_1_14_1","doi-asserted-by":"publisher","DOI":"10.1145\/3297858.3304004"},{"volume-title":"Bayesian Data Analysis","author":"Gelman A","key":"e_1_3_2_1_15_1","unstructured":"A Gelman , JB Carlin , HS Stern , and DB Rubin . 1995. Bayesian Data Analysis . Chapman & Hall , New York . A Gelman, JB Carlin, HS Stern, and DB Rubin. 1995. Bayesian Data Analysis. Chapman & Hall, New York."},{"key":"e_1_3_2_1_16_1","unstructured":"Andrew Gelman Aki Vehtari Pasi Jyl\u00e4nki Tuomas Sivula Dustin Tran Swupnil Sahai Paul Blomstedt John P Cunningham David Schiminovich and Christian Robert. 2017. Expectation propagation as a way of life: A framework for Bayesian inference on partitioned data. arXiv preprint arXiv:1412.4869 ( 2017 ). Andrew Gelman Aki Vehtari Pasi Jyl\u00e4nki Tuomas Sivula Dustin Tran Swupnil Sahai Paul Blomstedt John P Cunningham David Schiminovich and Christian Robert. 2017. Expectation propagation as a way of life: A framework for Bayesian inference on partitioned data. arXiv preprint arXiv:1412.4869 ( 2017 )."},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"publisher","DOI":"10.14778\/2735508.2735513"},{"volume-title":"Advances in Neural Information Processing Systems 27","author":"Goodfellow Ian","key":"e_1_3_2_1_18_1","unstructured":"Ian Goodfellow , Jean Pouget-Abadie , Mehdi Mirza , Bing Xu , David Warde-Farley , Sherjil Ozair , Aaron Courville , and Yoshua Bengio . 2014. Generative Adversarial Nets . In Advances in Neural Information Processing Systems 27 , Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger (Eds.). Curran Associates, Inc. , 2672-2680. http:\/\/papers.nips.cc\/paper\/5423-generative-adversarialnets.pdf Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial Nets. In Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger (Eds.). Curran Associates, Inc., 2672-2680. http:\/\/papers.nips.cc\/paper\/5423-generative-adversarialnets.pdf"},{"key":"e_1_3_2_1_19_1","volume-title":"Madhusudanan Kandasamy, Tulio Magno, Alex Mericas, Steve Munroe, Mauricio Oliveira, Bill Schmidt, Will Schmidt, et al.","author":"Hall Brian","year":"2017","unstructured":"Brian Hall , Peter Bergner , Alon Shalev Housfater , Madhusudanan Kandasamy, Tulio Magno, Alex Mericas, Steve Munroe, Mauricio Oliveira, Bill Schmidt, Will Schmidt, et al. 2017 . Performance optimization and tuning techniques for IBM Power Systems processors including IBM POWER8. IBM Redbooks . Brian Hall, Peter Bergner, Alon Shalev Housfater, Madhusudanan Kandasamy, Tulio Magno, Alex Mericas, Steve Munroe, Mauricio Oliveira, Bill Schmidt, Will Schmidt, et al. 2017. Performance optimization and tuning techniques for IBM Power Systems processors including IBM POWER8. IBM Redbooks."},{"key":"e_1_3_2_1_20_1","article-title":"Stochastic variational inference","volume":"14","author":"Hofman Matthew D","year":"2013","unstructured":"Matthew D Hofman , David M Blei , Chong Wang , and John Paisley . 2013 . Stochastic variational inference . The Journal of Machine Learning Research 14 , 1 ( 2013 ), 1303-1347. Matthew D Hofman, David M Blei, Chong Wang, and John Paisley. 2013. Stochastic variational inference. The Journal of Machine Learning Research 14, 1 ( 2013 ), 1303-1347.","journal-title":"The Journal of Machine Learning Research"},{"volume-title":"Intel 64 and IA-32 architectures optimization reference manual","year":"2014","key":"e_1_3_2_1_21_1","unstructured":"Intel. 2014. Intel 64 and IA-32 architectures optimization reference manual . Intel Corporation , Sept ( 2014 ). Intel. 2014. Intel 64 and IA-32 architectures optimization reference manual. Intel Corporation, Sept ( 2014 )."},{"volume-title":"Sparkbench: The Big Data Micro Benchmark Suite for Spark 2.0. https:\/\/github.com\/intel-hadoop\/HiBench\/. Accessed 19-November-2019.","year":"2016","key":"e_1_3_2_1_22_1","unstructured":"Intel. 2016 . Sparkbench: The Big Data Micro Benchmark Suite for Spark 2.0. https:\/\/github.com\/intel-hadoop\/HiBench\/. Accessed 19-November-2019. Intel. 2016. Sparkbench: The Big Data Micro Benchmark Suite for Spark 2.0. https:\/\/github.com\/intel-hadoop\/HiBench\/. Accessed 19-November-2019."},{"volume-title":"Top-down Microarchitecture Analysis Method. https:\/\/software.intel. com\/en-us\/ vtune-cookbook-top-down-microarchitecture-analysis-method. [Online","year":"2019","key":"e_1_3_2_1_23_1","unstructured":"Intel. 2019. Top-down Microarchitecture Analysis Method. https:\/\/software.intel. com\/en-us\/ vtune-cookbook-top-down-microarchitecture-analysis-method. [Online ; accessed 19- November - 2019 ]. Intel. 2019. Top-down Microarchitecture Analysis Method. https:\/\/software.intel. com\/en-us\/ vtune-cookbook-top-down-microarchitecture-analysis-method. [Online; accessed 19-November-2019]."},{"key":"e_1_3_2_1_24_1","volume-title":"ML-driven Malware for Targeting AV Safety. In 2020 50th Annual IEEE\/IFIP International Conference on Dependable Systems and Networks (DSN). IEEE.","author":"Jha Saurabh","year":"2020","unstructured":"Saurabh Jha , Shengkun Cui , Subho S Banerjee , Timothy Tsai , Zbigniew T Kalbarczyk , and Ravishankar K Iyer . 2020 . ML-driven Malware for Targeting AV Safety. In 2020 50th Annual IEEE\/IFIP International Conference on Dependable Systems and Networks (DSN). IEEE. Saurabh Jha, Shengkun Cui, Subho S Banerjee, Timothy Tsai, Zbigniew T Kalbarczyk, and Ravishankar K Iyer. 2020. ML-driven Malware for Targeting AV Safety. In 2020 50th Annual IEEE\/IFIP International Conference on Dependable Systems and Networks (DSN). IEEE."},{"key":"e_1_3_2_1_25_1","volume-title":"The Userspace I\/O HOWTO. https:\/\/www.kernel.org\/ doc\/html\/v4.12\/driver-api\/uio-howto. html. [Online","author":"Koch Hans-J\u00fcrgen","year":"2019","unstructured":"Hans-J\u00fcrgen Koch . 2006. The Userspace I\/O HOWTO. https:\/\/www.kernel.org\/ doc\/html\/v4.12\/driver-api\/uio-howto. html. [Online ; accessed 19- November 2019 ]. Hans-J\u00fcrgen Koch. 2006. The Userspace I\/O HOWTO. https:\/\/www.kernel.org\/ doc\/html\/v4.12\/driver-api\/uio-howto. html. [Online; accessed 19-November2019]."},{"volume-title":"Probabilistic graphical models: principles and techniques","author":"Koller Daphne","key":"e_1_3_2_1_26_1","unstructured":"Daphne Koller and Nir Friedman . 2009. Probabilistic graphical models: principles and techniques . MIT press . Daphne Koller and Nir Friedman. 2009. Probabilistic graphical models: principles and techniques. MIT press."},{"key":"e_1_3_2_1_27_1","volume-title":"perf: Linux profiling with performance counters. https: \/\/perf.wiki.kernel.org\/index.php\/Main_Page. [Online","author":"Community Linux","year":"2019","unstructured":"Linux Community . 2019. perf: Linux profiling with performance counters. https: \/\/perf.wiki.kernel.org\/index.php\/Main_Page. [Online ; accessed 19- November 2019 ]. Linux Community. 2019. perf: Linux profiling with performance counters. https: \/\/perf.wiki.kernel.org\/index.php\/Main_Page. [Online; accessed 19-November2019 ]."},{"key":"e_1_3_2_1_28_1","volume-title":"Vijay Janapa Reddi, and Kim Hazelwood","author":"Luk Chi-Keung","year":"2005","unstructured":"Chi-Keung Luk , Robert Cohn , Robert Muth , Harish Patil , Artur Klauser , Geof Lowney , Steven Wallace , Vijay Janapa Reddi, and Kim Hazelwood . 2005 . Pin: building customized program analysis tools with dynamic instrumentation. Acm sigplan notices 40, 6 ( 2005 ), 190-200. Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geof Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin: building customized program analysis tools with dynamic instrumentation. Acm sigplan notices 40, 6 ( 2005 ), 190-200."},{"key":"e_1_3_2_1_29_1","doi-asserted-by":"publisher","DOI":"10.1109\/MICRO.2018.00056"},{"key":"e_1_3_2_1_30_1","doi-asserted-by":"publisher","DOI":"10.1109\/IPDPS.2001.924955"},{"key":"e_1_3_2_1_31_1","doi-asserted-by":"publisher","DOI":"10.5555\/2074022.2074067"},{"key":"e_1_3_2_1_32_1","doi-asserted-by":"publisher","DOI":"10.1109\/MICRO.2007.27"},{"key":"e_1_3_2_1_33_1","doi-asserted-by":"publisher","DOI":"10.1145\/3148054"},{"key":"e_1_3_2_1_34_1","doi-asserted-by":"publisher","DOI":"10.1162\/089976600300014881"},{"key":"e_1_3_2_1_35_1","doi-asserted-by":"publisher","DOI":"10.1145\/2145694.2145703"},{"key":"e_1_3_2_1_36_1","doi-asserted-by":"publisher","DOI":"10.1145\/3352460.3358285"},{"key":"e_1_3_2_1_37_1","doi-asserted-by":"publisher","DOI":"10.1109\/ISCA.2018.00049"},{"key":"e_1_3_2_1_38_1","first-page":"805","volume-title":"FIRM: An Intelligent Fine-grained Resource Management Framework for SLO-Oriented Microservices. In 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20)","author":"Qiu Haoran","unstructured":"Haoran Qiu , Subho S. Banerjee , Saurabh Jha , Zbigniew T. Kalbarczyk , and Ravishankar K. Iyer . 2020 . FIRM: An Intelligent Fine-grained Resource Management Framework for SLO-Oriented Microservices. In 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20) . USENIX Association , 805 - 825 . https:\/\/www.usenix.org\/conference\/osdi20\/presentation\/qiu Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbigniew T. Kalbarczyk, and Ravishankar K. Iyer. 2020. FIRM: An Intelligent Fine-grained Resource Management Framework for SLO-Oriented Microservices. In 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20). USENIX Association, 805-825. https:\/\/www.usenix.org\/conference\/osdi20\/presentation\/qiu"},{"key":"e_1_3_2_1_39_1","doi-asserted-by":"publisher","DOI":"10.1147\/JRD.2014.2380198"},{"key":"e_1_3_2_1_40_1","doi-asserted-by":"publisher","DOI":"10.1145\/3307650.3322267"},{"key":"e_1_3_2_1_41_1","unstructured":"Linus Torvald. 2020. Linux Perf Subsystem Userspace Tools. https:\/\/git.kernel.org\/ pub\/scm\/linux\/kernel\/git\/torvalds\/linux.git\/tree\/tools\/perf\/pmu-events \/arch. Accessed 2020-03-05. Linus Torvald. 2020. Linux Perf Subsystem Userspace Tools. https:\/\/git.kernel.org\/ pub\/scm\/linux\/kernel\/git\/torvalds\/linux.git\/tree\/tools\/perf\/pmu-events \/arch. Accessed 2020-03-05."},{"key":"e_1_3_2_1_42_1","volume-title":"Blei","author":"Tran Dustin","year":"2016","unstructured":"Dustin Tran , Alp Kucukelbir , Adji B. Dieng , Maja Rudolph , Dawen Liang , and David M . Blei . 2016 . Edward : A library for probabilistic modeling, inference, and criticism. arXiv preprint arXiv:1610.09787 ( 2016 ). Dustin Tran, Alp Kucukelbir, Adji B. Dieng, Maja Rudolph, Dawen Liang, and David M. Blei. 2016. Edward: A library for probabilistic modeling, inference, and criticism. arXiv preprint arXiv:1610.09787 ( 2016 )."},{"key":"e_1_3_2_1_43_1","doi-asserted-by":"publisher","DOI":"10.1109\/IISWC.2008.4636099"},{"key":"e_1_3_2_1_44_1","doi-asserted-by":"publisher","DOI":"10.1109\/ISPASS.2013.6557172"},{"key":"e_1_3_2_1_45_1","doi-asserted-by":"publisher","DOI":"10.1109\/ISPASS.2014.6844459"},{"key":"e_1_3_2_1_46_1","doi-asserted-by":"publisher","DOI":"10.1145\/2254756.2254791"},{"key":"e_1_3_2_1_47_1","doi-asserted-by":"publisher","DOI":"10.1145\/2934664"},{"key":"e_1_3_2_1_48_1","doi-asserted-by":"publisher","DOI":"10.1145\/2967360.2967375"}],"event":{"name":"ASPLOS '21: 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems","sponsor":["SIGPLAN ACM Special Interest Group on Programming Languages"],"location":"Virtual USA","acronym":"ASPLOS '21"},"container-title":["Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/abs\/10.1145\/3445814.3446739","content-type":"text\/html","content-version":"vor","intended-application":"syndication"},{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3445814.3446739","content-type":"application\/pdf","content-version":"vor","intended-application":"syndication"},{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3445814.3446739","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,5,2]],"date-time":"2023-05-02T00:17:38Z","timestamp":1682986658000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3445814.3446739"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,4,17]]},"references-count":48,"alternative-id":["10.1145\/3445814.3446739","10.1145\/3445814"],"URL":"https:\/\/doi.org\/10.1145\/3445814.3446739","relation":{},"subject":[],"published":{"date-parts":[[2021,4,17]]},"assertion":[{"value":"2021-04-17","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}