{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,5,6]],"date-time":"2025-05-06T16:37:26Z","timestamp":1746549446655,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":55,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2021,4,19]]},"DOI":"10.1145\/3442381.3449851","type":"proceedings-article","created":{"date-parts":[[2021,6,3]],"date-time":"2021-06-03T19:37:45Z","timestamp":1622749065000},"page":"935-946","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":89,"title":["Characterizing Impacts of Heterogeneity in Federated Learning upon Large-Scale Smartphone Data"],"prefix":"10.1145","author":[{"given":"Chengxu","family":"Yang","sequence":"first","affiliation":[{"name":"Peking University, China"}]},{"given":"Qipeng","family":"Wang","sequence":"additional","affiliation":[{"name":"Peking University, China"}]},{"given":"Mengwei","family":"Xu","sequence":"additional","affiliation":[{"name":"Beijing University of Posts and Telecommunications, Peking University, China"}]},{"given":"Zhenpeng","family":"Chen","sequence":"additional","affiliation":[{"name":"Peking University, China"}]},{"given":"Kaigui","family":"Bian","sequence":"additional","affiliation":[{"name":"Peking University, China"}]},{"given":"Yunxin","family":"Liu","sequence":"additional","affiliation":[{"name":"Microsoft Research, China"}]},{"given":"Xuanzhe","family":"Liu","sequence":"additional","affiliation":[{"name":"Peking University, China"}]}],"member":"320","published-online":{"date-parts":[[2021,6,3]]},"reference":[{"key":"e_1_3_2_1_1_1","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D17-1045"},{"key":"e_1_3_2_1_2_1","doi-asserted-by":"publisher","DOI":"10.1145\/3038912.3052683"},{"key":"e_1_3_2_1_3_1","unstructured":"Eugene Bagdasaryan Andreas Veit Yiqing Hua Deborah Estrin and Vitaly Shmatikov. 2018. How to backdoor federated learning. arXiv preprint arXiv:1807.00459(2018). Eugene Bagdasaryan Andreas Veit Yiqing Hua Deborah Estrin and Vitaly Shmatikov. 2018. How to backdoor federated learning. arXiv preprint arXiv:1807.00459(2018)."},{"key":"e_1_3_2_1_4_1","volume-title":"Proceedings of 7th International Conference on Learning Representations, ICLR 2019","author":"Bernstein Jeremy","year":"2019","unstructured":"Jeremy Bernstein , Jiawei Zhao , Kamyar Azizzadenesheli , and Anima Anandkumar . 2019 . signSGD with majority vote is communication efficient and fault tolerant . In Proceedings of 7th International Conference on Learning Representations, ICLR 2019 , New Orleans, LA, USA , May 6-9, 2019. Jeremy Bernstein, Jiawei Zhao, Kamyar Azizzadenesheli, and Anima Anandkumar. 2019. signSGD with majority vote is communication efficient and fault tolerant. In Proceedings of 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019."},{"key":"e_1_3_2_1_5_1","volume-title":"Proceedings of Machine Learning and Systems 2019","author":"Bonawitz Keith","year":"2019","unstructured":"Keith Bonawitz , Hubert Eichner , Wolfgang Grieskamp , Dzmitry Huba , Alex Ingerman , Vladimir Ivanov , Chlo\u00e9 Kiddon , Jakub Konecn\u00fd , Stefano Mazzocchi , Brendan McMahan , Timon\u00a0Van Overveldt , David Petrou , Daniel Ramage , and Jason Roselander . 2019 . Towards federated learning at scale: system design . In Proceedings of Machine Learning and Systems 2019 , MLSys 2019, Stanford, CA, USA, March 31 - April 2, 2019. Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chlo\u00e9 Kiddon, Jakub Konecn\u00fd, Stefano Mazzocchi, Brendan McMahan, Timon\u00a0Van Overveldt, David Petrou, Daniel Ramage, and Jason Roselander. 2019. Towards federated learning at scale: system design. In Proceedings of Machine Learning and Systems 2019, MLSys 2019, Stanford, CA, USA, March 31 - April 2, 2019."},{"key":"e_1_3_2_1_6_1","doi-asserted-by":"publisher","DOI":"10.1145\/3133956.3133982"},{"key":"e_1_3_2_1_7_1","doi-asserted-by":"crossref","unstructured":"Keith Bonawitz Fariborz Salehi Jakub Kone\u010dn\u1ef3 Brendan McMahan and Marco Gruteser. 2019. Federated learning with autotuned communication-efficient secure aggregation. arXiv preprint arXiv:1912.00131(2019). Keith Bonawitz Fariborz Salehi Jakub Kone\u010dn\u1ef3 Brendan McMahan and Marco Gruteser. 2019. Federated learning with autotuned communication-efficient secure aggregation. arXiv preprint arXiv:1912.00131(2019).","DOI":"10.1109\/IEEECONF44664.2019.9049066"},{"key":"e_1_3_2_1_8_1","unstructured":"Sebastian Caldas Peter Wu Tian Li Jakub Kone\u010dn\u1ef3 H\u00a0Brendan McMahan Virginia Smith and Ameet Talwalkar. 2018. Leaf: a benchmark for federated settings. arXiv preprint arXiv:1812.01097(2018). Sebastian Caldas Peter Wu Tian Li Jakub Kone\u010dn\u1ef3 H\u00a0Brendan McMahan Virginia Smith and Ameet Talwalkar. 2018. Leaf: a benchmark for federated settings. arXiv preprint arXiv:1812.01097(2018)."},{"key":"e_1_3_2_1_9_1","volume-title":"Proceedings of 2019 USENIX Conference on Operational Machine Learning (OpML 19)","author":"Chai Zheng","year":"2019","unstructured":"Zheng Chai , Hannan Fayyaz , Zeshan Fayyaz , Ali Anwar , Yi Zhou , Nathalie Baracaldo , Heiko Ludwig , and Yue Cheng . 2019 . Towards taming the resource and data heterogeneity in federated learning . In Proceedings of 2019 USENIX Conference on Operational Machine Learning (OpML 19) . 19\u201321. Zheng Chai, Hannan Fayyaz, Zeshan Fayyaz, Ali Anwar, Yi Zhou, Nathalie Baracaldo, Heiko Ludwig, and Yue Cheng. 2019. Towards taming the resource and data heterogeneity in federated learning. In Proceedings of 2019 USENIX Conference on Operational Machine Learning (OpML 19). 19\u201321."},{"key":"e_1_3_2_1_10_1","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2019.2953131"},{"key":"e_1_3_2_1_11_1","doi-asserted-by":"publisher","DOI":"10.1145\/3368089.3409759"},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1145\/3178876.3186157"},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICSE43902.2021.00068"},{"key":"e_1_3_2_1_14_1","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN.2017.7966217"},{"key":"e_1_3_2_1_15_1","first-page":"2020","article-title":"Deep Learning for Java. https:\/\/deeplearning4j.org\/","volume":"16","year":"2020","unstructured":"Eclipse. 2020 . Deep Learning for Java. https:\/\/deeplearning4j.org\/ . Accessed Mar 16 , 2020 . Eclipse. 2020. Deep Learning for Java. https:\/\/deeplearning4j.org\/. Accessed Mar 16, 2020.","journal-title":"Accessed Mar"},{"key":"e_1_3_2_1_16_1","first-page":"1","article-title":"Neural architecture search: a survey","volume":"20","author":"Elsken Thomas","year":"2019","unstructured":"Thomas Elsken , Jan\u00a0Hendrik Metzen , and Frank Hutter . 2019 . Neural architecture search: a survey . Journal of Machine Learning Research 20 , 55 (2019), 1 \u2013 21 . Thomas Elsken, Jan\u00a0Hendrik Metzen, and Frank Hutter. 2019. Neural architecture search: a survey. Journal of Machine Learning Research 20, 55 (2019), 1\u201321.","journal-title":"Journal of Machine Learning Research"},{"key":"e_1_3_2_1_17_1","unstructured":"Andrew Hard Kanishka Rao Rajiv Mathews Swaroop Ramaswamy Fran\u00e7oise Beaufays Sean Augenstein Hubert Eichner Chlo\u00e9 Kiddon and Daniel Ramage. 2018. Federated learning for mobile keyboard prediction. arXiv preprint arXiv:1811.03604(2018). Andrew Hard Kanishka Rao Rajiv Mathews Swaroop Ramaswamy Fran\u00e7oise Beaufays Sean Augenstein Hubert Eichner Chlo\u00e9 Kiddon and Daniel Ramage. 2018. Federated learning for mobile keyboard prediction. arXiv preprint arXiv:1811.03604(2018)."},{"key":"e_1_3_2_1_18_1","unstructured":"Chaoyang He Songze Li Jinhyun So Mi Zhang Hongyi Wang Xiaoyang Wang Praneeth Vepakomma Abhishek Singh Hang Qiu Li Shen 2020. Fedml: a research library and benchmark for federated machine learning. arXiv preprint arXiv:2007.13518(2020). Chaoyang He Songze Li Jinhyun So Mi Zhang Hongyi Wang Xiaoyang Wang Praneeth Vepakomma Abhishek Singh Hang Qiu Li Shen 2020. Fedml: a research library and benchmark for federated machine learning. arXiv preprint arXiv:2007.13518(2020)."},{"key":"e_1_3_2_1_19_1","volume-title":"Proceedings of the European Conference on Computer Vision (ECCV). 288\u2013314","author":"Ignatov Andrey","year":"2018","unstructured":"Andrey Ignatov , Radu Timofte , William Chou , Ke Wang , Max Wu , Tim Hartley , and Luc Van\u00a0Gool . 2018 . Ai benchmark: running deep neural networks on android smartphones . In Proceedings of the European Conference on Computer Vision (ECCV). 288\u2013314 . Andrey Ignatov, Radu Timofte, William Chou, Ke Wang, Max Wu, Tim Hartley, and Luc Van\u00a0Gool. 2018. Ai benchmark: running deep neural networks on android smartphones. In Proceedings of the European Conference on Computer Vision (ECCV). 288\u2013314."},{"key":"e_1_3_2_1_20_1","unstructured":"Yihan Jiang Jakub Kone\u010dn\u1ef3 Keith Rush and Sreeram Kannan. 2019. Improving federated learning personalization via model agnostic meta learning. arXiv preprint arXiv:1909.12488(2019). Yihan Jiang Jakub Kone\u010dn\u1ef3 Keith Rush and Sreeram Kannan. 2019. Improving federated learning personalization via model agnostic meta learning. arXiv preprint arXiv:1909.12488(2019)."},{"key":"e_1_3_2_1_21_1","unstructured":"Peter Kairouz H\u00a0Brendan McMahan Brendan Avent Aur\u00e9lien Bellet Mehdi Bennis Arjun\u00a0Nitin Bhagoji Keith Bonawitz Zachary Charles Graham Cormode Rachel Cummings 2019. Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977(2019). Peter Kairouz H\u00a0Brendan McMahan Brendan Avent Aur\u00e9lien Bellet Mehdi Bennis Arjun\u00a0Nitin Bhagoji Keith Bonawitz Zachary Charles Graham Cormode Rachel Cummings 2019. Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977(2019)."},{"key":"e_1_3_2_1_22_1","doi-asserted-by":"publisher","DOI":"10.1109\/APNOMS.2011.6077030"},{"key":"e_1_3_2_1_23_1","unstructured":"Jakub Kone\u010dn\u1ef3 H\u00a0Brendan McMahan Daniel Ramage and Peter Richt\u00e1rik. 2016. Federated optimization: distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527(2016). Jakub Kone\u010dn\u1ef3 H\u00a0Brendan McMahan Daniel Ramage and Peter Richt\u00e1rik. 2016. Federated optimization: distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527(2016)."},{"key":"e_1_3_2_1_24_1","unstructured":"Jakub Kone\u010dn\u1ef3 H\u00a0Brendan McMahan Felix\u00a0X Yu Peter Richt\u00e1rik Ananda\u00a0Theertha Suresh and Dave Bacon. 2016. Federated learning: strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492(2016). Jakub Kone\u010dn\u1ef3 H\u00a0Brendan McMahan Felix\u00a0X Yu Peter Richt\u00e1rik Ananda\u00a0Theertha Suresh and Dave Bacon. 2016. Federated learning: strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492(2016)."},{"key":"e_1_3_2_1_25_1","unstructured":"Yassine Laguel Krishna Pillutla J\u00e9r\u00f4me Malick and Zaid Harchaoui. 2020. Device heterogeneity in federated learning: a superquantile approach. arXiv preprint arXiv:2002.11223(2020). Yassine Laguel Krishna Pillutla J\u00e9r\u00f4me Malick and Zaid Harchaoui. 2020. Device heterogeneity in federated learning: a superquantile approach. arXiv preprint arXiv:2002.11223(2020)."},{"key":"e_1_3_2_1_26_1","doi-asserted-by":"publisher","DOI":"10.1109\/RTSS46320.2019.00043"},{"key":"e_1_3_2_1_27_1","doi-asserted-by":"publisher","DOI":"10.1109\/MSP.2020.2975749"},{"key":"e_1_3_2_1_28_1","volume-title":"Proceedings of Machine Learning and Systems 2020","author":"Li Tian","year":"2020","unstructured":"Tian Li , Anit\u00a0Kumar Sahu , Manzil Zaheer , Maziar Sanjabi , Ameet Talwalkar , and Virginia Smith . 2020 . Federated Optimization in Heterogeneous Networks . In Proceedings of Machine Learning and Systems 2020 , MLSys 2020. Tian Li, Anit\u00a0Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. 2020. Federated Optimization in Heterogeneous Networks. In Proceedings of Machine Learning and Systems 2020, MLSys 2020."},{"key":"e_1_3_2_1_29_1","volume-title":"Proceedings of 8th International Conference on Learning Representations, ICLR 2020","author":"Li Tian","year":"2020","unstructured":"Tian Li , Maziar Sanjabi , Ahmad Beirami , and Virginia Smith . 2020 . Fair resource allocation in federated learning . In Proceedings of 8th International Conference on Learning Representations, ICLR 2020 , Addis Ababa, Ethiopia , April 26-30, 2020. Tian Li, Maziar Sanjabi, Ahmad Beirami, and Virginia Smith. 2020. Fair resource allocation in federated learning. In Proceedings of 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020."},{"key":"e_1_3_2_1_30_1","volume-title":"Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017. 1273\u20131282","author":"McMahan Brendan","year":"2017","unstructured":"Brendan McMahan , Eider Moore , Daniel Ramage , Seth Hampson , and Blaise\u00a0Ag\u00fcera y Arcas . 2017 . Communication-efficient learning of deep networks from decentralized data . In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017. 1273\u20131282 . Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise\u00a0Ag\u00fcera y Arcas. 2017. Communication-efficient learning of deep networks from decentralized data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017. 1273\u20131282."},{"key":"e_1_3_2_1_31_1","unstructured":"H\u00a0Brendan McMahan Daniel Ramage Kunal Talwar and Li Zhang. 2017. Learning differentially private recurrent language models. arXiv preprint arXiv:1710.06963(2017). H\u00a0Brendan McMahan Daniel Ramage Kunal Talwar and Li Zhang. 2017. Learning differentially private recurrent language models. arXiv preprint arXiv:1710.06963(2017)."},{"key":"e_1_3_2_1_32_1","doi-asserted-by":"publisher","DOI":"10.1109\/SP.2019.00029"},{"key":"e_1_3_2_1_33_1","doi-asserted-by":"publisher","DOI":"10.1145\/3366423.3380106"},{"key":"e_1_3_2_1_34_1","unstructured":"Mehryar Mohri Gary Sivek and Ananda\u00a0Theertha Suresh. 2019. Agnostic federated learning. arXiv preprint arXiv:1902.00146(2019). Mehryar Mohri Gary Sivek and Ananda\u00a0Theertha Suresh. 2019. Agnostic federated learning. arXiv preprint arXiv:1902.00146(2019)."},{"key":"e_1_3_2_1_35_1","volume-title":"Accessed","author":"The Chinese University of Hong\u00a0Kong Multimedia\u00a0Laboratory.","year":"2020","unstructured":"The Chinese University of Hong\u00a0Kong Multimedia\u00a0Laboratory. 2020 . Large-scale CelebFaces Attributes (CelebA) Dataset. http:\/\/mmlab.ie.cuhk.edu.hk\/projects\/CelebA.html . Accessed May 22, 2020. The Chinese University of Hong\u00a0Kong Multimedia\u00a0Laboratory. 2020. Large-scale CelebFaces Attributes (CelebA) Dataset. http:\/\/mmlab.ie.cuhk.edu.hk\/projects\/CelebA.html. Accessed May 22, 2020."},{"key":"e_1_3_2_1_36_1","unstructured":"Milad Nasr Reza Shokri and Amir Houmansadr. 2018. Comprehensive privacy analysis of deep learning: stand-alone and federated learning under passive and active white-box inference attacks. arXiv preprint arXiv:1812.00910(2018). Milad Nasr Reza Shokri and Amir Houmansadr. 2018. Comprehensive privacy analysis of deep learning: stand-alone and federated learning under passive and active white-box inference attacks. arXiv preprint arXiv:1812.00910(2018)."},{"key":"e_1_3_2_1_37_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICC.2019.8761315"},{"key":"e_1_3_2_1_38_1","unstructured":"Chaoyue Niu Fan Wu Shaojie Tang Lifeng Hua Rongfei Jia Chengfei Lv Zhihua Wu and Guihai Chen. 2019. Secure federated submodel learning. arXiv preprint arXiv:1911.02254(2019). Chaoyue Niu Fan Wu Shaojie Tang Lifeng Hua Rongfei Jia Chengfei Lv Zhihua Wu and Guihai Chen. 2019. Secure federated submodel learning. arXiv preprint arXiv:1911.02254(2019)."},{"volume-title":"Accessed","year":"2020","key":"e_1_3_2_1_39_1","unstructured":"PaddlePaddle. 2020 . Federated deep learning in PaddlePaddle. https:\/\/github.com\/PaddlePaddle\/PaddleFL . Accessed Jan 28, 2020. PaddlePaddle. 2020. Federated deep learning in PaddlePaddle. https:\/\/github.com\/PaddlePaddle\/PaddleFL. Accessed Jan 28, 2020."},{"volume-title":"Accessed","year":"2020","key":"e_1_3_2_1_40_1","unstructured":"PushShift.io. 2020 . Reddit Dataset. https:\/\/files.pushshift.io\/reddit\/ . Accessed May 22, 2020. PushShift.io. 2020. Reddit Dataset. https:\/\/files.pushshift.io\/reddit\/. Accessed May 22, 2020."},{"key":"e_1_3_2_1_41_1","unstructured":"Amirhossein Reisizadeh Aryan Mokhtari Hamed Hassani Ali Jadbabaie and Ramtin Pedarsani. 2019. Fedpaq: a communication-efficient federated learning method with periodic averaging and quantization. arXiv preprint arXiv:1909.13014(2019). Amirhossein Reisizadeh Aryan Mokhtari Hamed Hassani Ali Jadbabaie and Ramtin Pedarsani. 2019. Fedpaq: a communication-efficient federated learning method with periodic averaging and quantization. arXiv preprint arXiv:1909.13014(2019)."},{"key":"e_1_3_2_1_42_1","unstructured":"Theo Ryffel Andrew Trask Morten Dahl Bobby Wagner Jason Mancuso Daniel Rueckert and Jonathan Passerat-Palmbach. 2018. A generic framework for privacy preserving deep learning. arXiv preprint arXiv:1811.04017(2018). Theo Ryffel Andrew Trask Morten Dahl Bobby Wagner Jason Mancuso Daniel Rueckert and Jonathan Passerat-Palmbach. 2018. A generic framework for privacy preserving deep learning. arXiv preprint arXiv:1811.04017(2018)."},{"key":"e_1_3_2_1_43_1","volume-title":"Proceedings of Advances in Neural Information Processing Systems. 4424\u20134434","author":"Smith Virginia","year":"2017","unstructured":"Virginia Smith , Chao-Kai Chiang , Maziar Sanjabi , and Ameet\u00a0 S Talwalkar . 2017 . Federated multi-task learning . In Proceedings of Advances in Neural Information Processing Systems. 4424\u20134434 . Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet\u00a0S Talwalkar. 2017. Federated multi-task learning. In Proceedings of Advances in Neural Information Processing Systems. 4424\u20134434."},{"volume-title":"Accessed","year":"2020","key":"e_1_3_2_1_44_1","unstructured":"Tensorflow. 2020 . TensorFlow Federated: Machine Learning on Decentralized Data. https:\/\/www.tensorflow.org\/federated . Accessed Jan 28, 2020. Tensorflow. 2020. TensorFlow Federated: Machine Learning on Decentralized Data. https:\/\/www.tensorflow.org\/federated. Accessed Jan 28, 2020."},{"volume-title":"California Consumer Privacy Act. https:\/\/en.wikipedia.org\/wiki\/California_Consumer_Privacy_Act. Accessed","year":"2020","key":"e_1_3_2_1_45_1","unstructured":"Wikipedia. 2020. California Consumer Privacy Act. https:\/\/en.wikipedia.org\/wiki\/California_Consumer_Privacy_Act. Accessed Feb 5, 2020 . Wikipedia. 2020. California Consumer Privacy Act. https:\/\/en.wikipedia.org\/wiki\/California_Consumer_Privacy_Act. Accessed Feb 5, 2020."},{"volume-title":"Accessed","year":"2020","key":"e_1_3_2_1_46_1","unstructured":"Wikipedia. 2020 . Compression ratio. https:\/\/en.wikipedia.org\/wiki\/Compression_ratio . Accessed Oct 18, 2020. Wikipedia. 2020. Compression ratio. https:\/\/en.wikipedia.org\/wiki\/Compression_ratio. Accessed Oct 18, 2020."},{"volume-title":"General Data Protection Regulation. https:\/\/en.wikipedia.org\/wiki\/General_Data_Protection_Regulation. Accessed","year":"2020","key":"e_1_3_2_1_47_1","unstructured":"Wikipedia. 2020. General Data Protection Regulation. https:\/\/en.wikipedia.org\/wiki\/General_Data_Protection_Regulation. Accessed Feb 5, 2020 . Wikipedia. 2020. General Data Protection Regulation. https:\/\/en.wikipedia.org\/wiki\/General_Data_Protection_Regulation. Accessed Feb 5, 2020."},{"key":"e_1_3_2_1_48_1","unstructured":"Martin Wistuba Ambrish Rawat and Tejaswini Pedapati. 2019. A survey on neural architecture search. arXiv preprint arXiv:1905.01392(2019). Martin Wistuba Ambrish Rawat and Tejaswini Pedapati. 2019. A survey on neural architecture search. arXiv preprint arXiv:1905.01392(2019)."},{"key":"e_1_3_2_1_49_1","doi-asserted-by":"publisher","DOI":"10.1145\/3308558.3313591"},{"key":"e_1_3_2_1_50_1","doi-asserted-by":"publisher","DOI":"10.1145\/3287075"},{"key":"e_1_3_2_1_51_1","doi-asserted-by":"publisher","DOI":"10.1109\/TMC.2019.2893250"},{"key":"e_1_3_2_1_52_1","doi-asserted-by":"publisher","DOI":"10.1145\/3241539.3241563"},{"key":"e_1_3_2_1_53_1","unstructured":"Timothy Yang Galen Andrew Hubert Eichner Haicheng Sun Wei Li Nicholas Kong Daniel Ramage and Fran\u00e7oise Beaufays. 2018. Applied federated learning: improving google keyboard query suggestions. arXiv preprint arXiv:1812.02903(2018). Timothy Yang Galen Andrew Hubert Eichner Haicheng Sun Wei Li Nicholas Kong Daniel Ramage and Fran\u00e7oise Beaufays. 2018. Applied federated learning: improving google keyboard query suggestions. arXiv preprint arXiv:1812.02903(2018)."},{"key":"e_1_3_2_1_54_1","first-page":"100","article-title":"Short communication mobile usage and sleep patterns among medical students","volume":"58","author":"Yogesh Saxena","year":"2014","unstructured":"Saxena Yogesh , Shrivastava Abha , and Singh Priyanka . 2014 . Short communication mobile usage and sleep patterns among medical students . Indian J Physiol Pharmacol 58 , 1 (2014), 100 \u2013 103 . Saxena Yogesh, Shrivastava Abha, and Singh Priyanka. 2014. Short communication mobile usage and sleep patterns among medical students. Indian J Physiol Pharmacol 58, 1 (2014), 100\u2013103.","journal-title":"Indian J Physiol Pharmacol"},{"key":"e_1_3_2_1_55_1","unstructured":"Jinliang Yuan Mengwei Xu Xiao Ma Ao Zhou Xuanzhe Liu and Shangguang Wang. 2020. Hierarchical Federated Learning through LAN-WAN Orchestration. arXiv preprint arXiv:2010.11612(2020). Jinliang Yuan Mengwei Xu Xiao Ma Ao Zhou Xuanzhe Liu and Shangguang Wang. 2020. Hierarchical Federated Learning through LAN-WAN Orchestration. arXiv preprint arXiv:2010.11612(2020)."}],"event":{"name":"WWW '21: The Web Conference 2021","sponsor":["SIGWEB ACM Special Interest Group on Hypertext, Hypermedia, and Web"],"location":"Ljubljana Slovenia","acronym":"WWW '21"},"container-title":["Proceedings of the Web Conference 2021"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3442381.3449851","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,11]],"date-time":"2023-01-11T04:17:50Z","timestamp":1673410670000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3442381.3449851"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,4,19]]},"references-count":55,"alternative-id":["10.1145\/3442381.3449851","10.1145\/3442381"],"URL":"https:\/\/doi.org\/10.1145\/3442381.3449851","relation":{},"subject":[],"published":{"date-parts":[[2021,4,19]]},"assertion":[{"value":"2021-06-03","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}