{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,5,5]],"date-time":"2025-05-05T14:09:57Z","timestamp":1746454197609,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":53,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2021,3,3]]},"DOI":"10.1145\/3442188.3445920","type":"proceedings-article","created":{"date-parts":[[2021,3,3]],"date-time":"2021-03-03T01:26:24Z","timestamp":1614734784000},"page":"587-597","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":28,"title":["One Label, One Billion Faces"],"prefix":"10.1145","author":[{"given":"Zaid","family":"Khan","sequence":"first","affiliation":[{"name":"Northeastern University"}]},{"given":"Yun","family":"Fu","sequence":"additional","affiliation":[{"name":"Northeastern University"}]}],"member":"320","published-online":{"date-parts":[[2021,3]]},"reference":[{"key":"e_1_3_2_1_1_1","unstructured":"[n.d.]. Lessons from the PULSE Model and Discussion. https:\/\/thegradient.pub\/pulse-lessons\/ [n.d.]. Lessons from the PULSE Model and Discussion. https:\/\/thegradient.pub\/pulse-lessons\/"},{"key":"e_1_3_2_1_2_1","series-title":"Lecture Notes in Computer Science","volume-title":"Computer Vision - ECCV 2018 Workshops, Laura Leal-Taix\u00e9 and Stefan Roth (Eds.)","author":"Alvi Mohsan","unstructured":"Mohsan Alvi , Andrew Zisserman , and Christoffer Nell\u00e5ker . [n.d.]. Turning a Blind Eye: Explicit Removal of Biases and Variation from Deep Neural Network Embeddings . In Computer Vision - ECCV 2018 Workshops, Laura Leal-Taix\u00e9 and Stefan Roth (Eds.) . Lecture Notes in Computer Science , Vol. 11129 . Springer International Publishing , 556--572. https:\/\/doi.org\/10.1007\/978-3-030-11009-3_34 10.1007\/978-3-030-11009-3_34 Mohsan Alvi, Andrew Zisserman, and Christoffer Nell\u00e5ker. [n.d.]. Turning a Blind Eye: Explicit Removal of Biases and Variation from Deep Neural Network Embeddings. In Computer Vision - ECCV 2018 Workshops, Laura Leal-Taix\u00e9 and Stefan Roth (Eds.). Lecture Notes in Computer Science, Vol. 11129. Springer International Publishing, 556--572. https:\/\/doi.org\/10.1007\/978-3-030-11009-3_34"},{"volume-title":"Handbook of Linguistic Annotation","author":"Artstein Ron","key":"e_1_3_2_1_3_1","unstructured":"Ron Artstein . [n.d.]. Inter-Annotator Agreement . In Handbook of Linguistic Annotation , Nancy Ide and James Pustejovsky (Eds.). Springer Netherlands , 297--313. https:\/\/doi.org\/10.1007\/978-94-024-0881-2_11 10.1007\/978-94-024-0881-2_11 Ron Artstein. [n.d.]. Inter-Annotator Agreement. In Handbook of Linguistic Annotation, Nancy Ide and James Pustejovsky (Eds.). Springer Netherlands, 297--313. https:\/\/doi.org\/10.1007\/978-94-024-0881-2_11"},{"key":"e_1_3_2_1_4_1","first-page":"1323","volume":"142","author":"Bainbridge Wilma A.","unstructured":"Wilma A. Bainbridge , Phillip Isola , and Aude Oliva . [n.d.]. The Intrinsic Memorability of Face Photographs. 142 , 4 ([n. d.]), 1323 -- 1334 . https:\/\/doi.org\/10.1037\/a0033872 10.1037\/a0033872 Wilma A. Bainbridge, Phillip Isola, and Aude Oliva. [n.d.]. The Intrinsic Memorability of Face Photographs. 142, 4 ([n. d.]), 1323--1334. https:\/\/doi.org\/10.1037\/a0033872","journal-title":"The Intrinsic Memorability of Face Photographs."},{"key":"e_1_3_2_1_5_1","doi-asserted-by":"crossref","unstructured":"Sebastian Benthall and Bruce D. Haynes. [n.d.]. Racial Categories in Machine Learning. ([n.d.]) 289--298. https:\/\/doi.org\/10.1145\/3287560.3287575 arXiv:1811.11668 10.1145\/3287560.3287575\nSebastian Benthall and Bruce D. Haynes. [n.d.]. Racial Categories in Machine Learning. ([n.d.]) 289--298. https:\/\/doi.org\/10.1145\/3287560.3287575 arXiv:1811.11668","DOI":"10.1145\/3287560.3287575"},{"key":"e_1_3_2_1_6_1","first-page":"37","volume":"96","author":"Bryc Katarzyna","unstructured":"Katarzyna Bryc , Eric Y. Durand , J. Michael Macpherson , David Reich , and Joanna L. Mountain . [n.d.]. The Genetic Ancestry of African Americans , Latinos, and European Americans across the United States. 96 , 1 ([n.d.]), 37 -- 53 . https:\/\/doi.org\/10.1016\/j.ajhg.2014.11.010 10.1016\/j.ajhg.2014.11.010 Katarzyna Bryc, Eric Y. Durand, J. Michael Macpherson, David Reich, and Joanna L. Mountain. [n.d.]. The Genetic Ancestry of African Americans, Latinos, and European Americans across the United States. 96, 1 ([n.d.]), 37--53. https:\/\/doi.org\/10.1016\/j.ajhg.2014.11.010","journal-title":"United States."},{"key":"e_1_3_2_1_7_1","unstructured":"Joy Buolamwini and Timnit Gebru. [n.d.]. Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. ([n.d.]) 15. Joy Buolamwini and Timnit Gebru. [n.d.]. Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. ([n.d.]) 15."},{"key":"e_1_3_2_1_8_1","first-page":"2209","volume":"20","author":"Chen Shixing","unstructured":"Shixing Chen , Caojin Zhang , and Ming Dong . [n.d.]. Deep Age Estimation: From Classification to Ranking. 20 , 8 ([n.d.]), 2209 -- 2222 . https:\/\/doi.org\/10.1109\/TMM.2017.2786869 10.1109\/TMM.2017.2786869 Shixing Chen, Caojin Zhang, and Ming Dong. [n.d.]. Deep Age Estimation: From Classification to Ranking. 20, 8 ([n.d.]), 2209--2222. https:\/\/doi.org\/10.1109\/TMM.2017.2786869","journal-title":"Ranking."},{"key":"e_1_3_2_1_9_1","unstructured":"Sandee LaMotte CNN. [n.d.]. Billions Spent on Ads Encouraging Minority Youth to Drink Unhealthy Sugar-Laden Beverages. https:\/\/www.cnn.com\/2020\/06\/23\/health\/soda-targets-minority-youth-wellness\/index.html Sandee LaMotte CNN. [n.d.]. Billions Spent on Ads Encouraging Minority Youth to Drink Unhealthy Sugar-Laden Beverages. https:\/\/www.cnn.com\/2020\/06\/23\/health\/soda-targets-minority-youth-wellness\/index.html"},{"key":"e_1_3_2_1_10_1","first-page":"173","volume":"7","author":"Cosmides Leda","unstructured":"Leda Cosmides , John Tooby , and Robert Kurzban . [n.d.]. Perceptions of Race. 7 , 4 ([n. d.]), 173 -- 179 . https:\/\/doi.org\/10.1016\/S1364-6613(03)00057-3 10.1016\/S1364-6613(03)00057-3 Leda Cosmides, John Tooby, and Robert Kurzban. [n.d.]. Perceptions of Race. 7, 4 ([n. d.]), 173--179. https:\/\/doi.org\/10.1016\/S1364-6613(03)00057-3","journal-title":"Perceptions of Race."},{"key":"e_1_3_2_1_11_1","doi-asserted-by":"crossref","unstructured":"J. Deng W. Dong R. Socher L.-J. Li K. Li and L. Fei-Fei. 2009. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09. J. Deng W. Dong R. Socher L.-J. Li K. Li and L. Fei-Fei. 2009. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09.","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"e_1_3_2_1_12_1","unstructured":"Zhengming Ding Yandong Guo Lei Zhang and Yun Fu. [n.d.]. Generative One-Shot Face Recognition. ([n.d.]). arXiv:1910.04860 [cs] http:\/\/arxiv.org\/abs\/1910.04860 Zhengming Ding Yandong Guo Lei Zhang and Yun Fu. [n.d.]. Generative One-Shot Face Recognition. ([n.d.]). arXiv:1910.04860 [cs] http:\/\/arxiv.org\/abs\/1910.04860"},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"crossref","unstructured":"Heather J. H. Edgar Shamsi Daneshvari Edward F. Harris and Philip J. Kroth. [n.d.]. Inter-Observer Agreement on Subjects' Race and Race-Informative Characteristics. 6 8 ([n.d.]) e23986. https:\/\/doi.org\/10.1371\/journal.pone.0023986 10.1371\/journal.pone.0023986\nHeather J. H. Edgar Shamsi Daneshvari Edward F. Harris and Philip J. Kroth. [n.d.]. Inter-Observer Agreement on Subjects' Race and Race-Informative Characteristics. 6 8 ([n.d.]) e23986. https:\/\/doi.org\/10.1371\/journal.pone.0023986","DOI":"10.1371\/journal.pone.0023986"},{"key":"e_1_3_2_1_14_1","first-page":"390","volume":"60","author":"Feliciano Cynthia","unstructured":"Cynthia Feliciano . [n.d.]. Shades of Race: How Phenotype and Observer Characteristics Shape Racial Classification. 60 , 4 ([n. d.]), 390 -- 419 . https:\/\/doi.org\/10.1177\/0002764215613401 10.1177\/0002764215613401 Cynthia Feliciano. [n.d.]. Shades of Race: How Phenotype and Observer Characteristics Shape Racial Classification. 60, 4 ([n. d.]), 390--419. https:\/\/doi.org\/10.1177\/0002764215613401","journal-title":"Shades of Race: How Phenotype and Observer Characteristics Shape Racial Classification."},{"key":"e_1_3_2_1_15_1","first-page":"2483","volume":"36","author":"Fu Siyao","unstructured":"Siyao Fu , Haibo He , and Zeng-Guang Hou . [n.d.]. Learning Race from Face : A Survey. 36 , 12 ([n.d.]), 2483 -- 2509 . https:\/\/doi.org\/10.1109\/TPAMI.2014.2321570 10.1109\/TPAMI.2014.2321570 Siyao Fu, Haibo He, and Zeng-Guang Hou. [n.d.]. Learning Race from Face: A Survey. 36, 12 ([n.d.]), 2483--2509. https:\/\/doi.org\/10.1109\/TPAMI.2014.2321570","journal-title":"A Survey."},{"key":"e_1_3_2_1_16_1","doi-asserted-by":"crossref","unstructured":"R. Stuart Geiger Kevin Yu Yanlai Yang Mindy Dai Jie Qiu Rebekah Tang and Jenny Huang. [n.d.]. Garbage In Garbage Out? Do Machine Learning Application Papers in Social Computing Report Where Human-Labeled Training Data Comes From? ([n.d.]). https:\/\/doi.org\/10.1145\/3351095.3372862 arXiv:1912.08320 [cs] 10.1145\/3351095.3372862\nR. Stuart Geiger Kevin Yu Yanlai Yang Mindy Dai Jie Qiu Rebekah Tang and Jenny Huang. [n.d.]. Garbage In Garbage Out? Do Machine Learning Application Papers in Social Computing Report Where Human-Labeled Training Data Comes From? ([n.d.]). https:\/\/doi.org\/10.1145\/3351095.3372862 arXiv:1912.08320 [cs]","DOI":"10.1145\/3351095.3372862"},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"crossref","unstructured":"Patrick Grother Mei Ngan and Kayee Hanaoka. [n.d.]. Face Recognition Vendor Test Part 3:: Demographic Effects. NIST IR 8280 pages. https:\/\/doi.org\/10.6028\/NIST.IR.8280 10.6028\/NIST.IR.8280\nPatrick Grother Mei Ngan and Kayee Hanaoka. [n.d.]. Face Recognition Vendor Test Part 3:: Demographic Effects. NIST IR 8280 pages. https:\/\/doi.org\/10.6028\/NIST.IR.8280","DOI":"10.6028\/NIST.IR.8280"},{"key":"e_1_3_2_1_18_1","doi-asserted-by":"crossref","unstructured":"Alex Hanna Emily Denton Andrew Smart and Jamila Smith-Loud. [n.d.]. Towards a Critical Race Methodology in Algorithmic Fairness. ([n.d.]). https:\/\/doi.org\/10.1145\/3351095.3372826 arXiv:1912.03593 [cs] 10.1145\/3351095.3372826\nAlex Hanna Emily Denton Andrew Smart and Jamila Smith-Loud. [n.d.]. Towards a Critical Race Methodology in Algorithmic Fairness. ([n.d.]). https:\/\/doi.org\/10.1145\/3351095.3372826 arXiv:1912.03593 [cs]","DOI":"10.1145\/3351095.3372826"},{"key":"e_1_3_2_1_19_1","unstructured":"Kaiming He Xiangyu Zhang Shaoqing Ren and Jian Sun. [n.d.]. Deep Residual Learning for Image Recognition. ([n.d.]). arXiv:1512.03385 [cs] http:\/\/arxiv.org\/abs\/1512.03385 Kaiming He Xiangyu Zhang Shaoqing Ren and Jian Sun. [n.d.]. Deep Residual Learning for Image Recognition. ([n.d.]). arXiv:1512.03385 [cs] http:\/\/arxiv.org\/abs\/1512.03385"},{"key":"e_1_3_2_1_20_1","unstructured":"Matthias Hein Maksym Andriushchenko and Julian Bitterwolf. [n.d.]. Why ReLU Networks Yield High-Confidence Predictions Far Away from the Training Data and How to Mitigate the Problem. ([n.d.]). arXiv:1812.05720 [cs stat] http:\/\/arxiv.org\/abs\/1812.05720 Matthias Hein Maksym Andriushchenko and Julian Bitterwolf. [n.d.]. Why ReLU Networks Yield High-Confidence Predictions Far Away from the Training Data and How to Mitigate the Problem. ([n.d.]). arXiv:1812.05720 [cs stat] http:\/\/arxiv.org\/abs\/1812.05720"},{"key":"e_1_3_2_1_21_1","first-page":"747","volume":"343","author":"Hellenthal G.","unstructured":"G. Hellenthal , G. B. J. Busby , G. Band , J. F. Wilson , C. Capelli , D. Falush , and S. Myers . [n.d.]. A Genetic Atlas of Human Admixture History. 343 , 6172 ([n.d.]), 747 -- 751 . https:\/\/doi.org\/10.1126\/science.1243518 10.1126\/science.1243518 G. Hellenthal, G. B. J. Busby, G. Band, J. F. Wilson, C. Capelli, D. Falush, and S. Myers. [n.d.]. A Genetic Atlas of Human Admixture History. 343, 6172 ([n.d.]), 747--751. https:\/\/doi.org\/10.1126\/science.1243518","journal-title":"[n.d.]. A Genetic Atlas of Human Admixture History."},{"key":"e_1_3_2_1_22_1","first-page":"58","volume":"73","author":"How Observers' What I","unstructured":"Melissa R. Herman. [n.d.]. Do You See What I Am?: How Observers' Backgrounds Affect Their Perceptions of Multiracial Faces. 73 , 1 ([n.d.]), 58 -- 78 . https:\/\/doi.org\/10.1177\/0190272510361436 10.1177\/0190272510361436 Melissa R. Herman. [n.d.]. Do You See What I Am?: How Observers' Backgrounds Affect Their Perceptions of Multiracial Faces. 73, 1 ([n.d.]), 58--78. https:\/\/doi.org\/10.1177\/0190272510361436","journal-title":"Backgrounds Affect Their Perceptions of Multiracial Faces."},{"key":"e_1_3_2_1_23_1","unstructured":"Jeremy Howard and Sylvain Gugger. [n.d.]. Fastai: A Layered API for Deep Learning. ([n.d.]). arXiv:2002.04688 [cs stat] http:\/\/arxiv.org\/abs\/2002.04688 Jeremy Howard and Sylvain Gugger. [n.d.]. Fastai: A Layered API for Deep Learning. ([n.d.]). arXiv:2002.04688 [cs stat] http:\/\/arxiv.org\/abs\/2002.04688"},{"key":"e_1_3_2_1_24_1","volume-title":"DemogPairs: Quantifying the Impact of Demographic Imbalance in Deep Face Recognition. In 2019 14th IEEE International Conference on Automatic Face Gesture Recognition (FG 2019) (2019","author":"Hupont Isabelle","year":"2019","unstructured":"Isabelle Hupont and Carles Fern\u00e1ndez . [n.d.]. DemogPairs: Quantifying the Impact of Demographic Imbalance in Deep Face Recognition. In 2019 14th IEEE International Conference on Automatic Face Gesture Recognition (FG 2019) (2019 -05). 1--7. https:\/\/doi.org\/10.1109\/FG. 2019 .8756625 10.1109\/FG.2019.8756625 Isabelle Hupont and Carles Fern\u00e1ndez. [n.d.]. DemogPairs: Quantifying the Impact of Demographic Imbalance in Deep Face Recognition. In 2019 14th IEEE International Conference on Automatic Face Gesture Recognition (FG 2019) (2019-05). 1--7. https:\/\/doi.org\/10.1109\/FG.2019.8756625"},{"key":"e_1_3_2_1_25_1","doi-asserted-by":"crossref","unstructured":"Lynn B Jorde and Stephen P Wooding. [n.d.]. Genetic Variation Classification and 'Race'. 36 S11 ([n. d.]) S28-S33. https:\/\/doi.org\/10.1038\/ng1435 10.1038\/ng1435\nLynn B Jorde and Stephen P Wooding. [n.d.]. Genetic Variation Classification and 'Race'. 36 S11 ([n. d.]) S28-S33. https:\/\/doi.org\/10.1038\/ng1435","DOI":"10.1038\/ng1435"},{"key":"e_1_3_2_1_26_1","unstructured":"Tero Karras Timo Aila Samuli Laine and Jaakko Lehtinen. [n.d.]. Progressive Growing of GANs for Improved Quality Stability and Variation. ([n.d.]). arXiv:1710.10196 [cs stat] http:\/\/arxiv.org\/abs\/1710.10196 Tero Karras Timo Aila Samuli Laine and Jaakko Lehtinen. [n.d.]. Progressive Growing of GANs for Improved Quality Stability and Variation. ([n.d.]). arXiv:1710.10196 [cs stat] http:\/\/arxiv.org\/abs\/1710.10196"},{"key":"e_1_3_2_1_27_1","unstructured":"K. S. Krishnapriya Kushal Vangara Michael C. King Vitor Albiero and Kevin Bowyer. [n.d.]. Characterizing the Variability in Face Recognition Accuracy Relative to Race. ([n.d.]). arXiv:1904.07325 [cs] http:\/\/arxiv.org\/abs\/1904.07325 K. S. Krishnapriya Kushal Vangara Michael C. King Vitor Albiero and Kevin Bowyer. [n.d.]. Characterizing the Variability in Face Recognition Accuracy Relative to Race. ([n.d.]). arXiv:1904.07325 [cs] http:\/\/arxiv.org\/abs\/1904.07325"},{"key":"e_1_3_2_1_28_1","unstructured":"Kimmo K\u00e4rkk\u00e4inen and Jungseock Joo. [n.d.]. FairFace: Face Attribute Dataset for Balanced Race Gender and Age. ([n.d.]). arXiv:1908.04913 [cs] http:\/\/arxiv.org\/abs\/1908.04913 Kimmo K\u00e4rkk\u00e4inen and Jungseock Joo. [n.d.]. FairFace: Face Attribute Dataset for Balanced Race Gender and Age. ([n.d.]). arXiv:1908.04913 [cs] http:\/\/arxiv.org\/abs\/1908.04913"},{"key":"e_1_3_2_1_29_1","first-page":"582","volume":"59","author":"Laster Pirtle Whitney N.","unstructured":"Whitney N. Laster Pirtle and Tony N. Brown . [n.d.]. Inconsistency within Expressed and Observed Racial Identifications: Implications for Mental Health Status. 59 , 3 ([n.d.]), 582 -- 603 . https:\/\/doi.org\/10.1177\/0731121415602133 10.1177\/0731121415602133 Whitney N. Laster Pirtle and Tony N. Brown. [n.d.]. Inconsistency within Expressed and Observed Racial Identifications: Implications for Mental Health Status. 59, 3 ([n.d.]), 582--603. https:\/\/doi.org\/10.1177\/0731121415602133","journal-title":"Inconsistency within Expressed and Observed Racial Identifications: Implications for Mental Health Status."},{"key":"e_1_3_2_1_30_1","first-page":"409","volume":"513","author":"Lazaridis Iosif","unstructured":"Iosif Lazaridis , Nick Patterson , Alissa Mittnik , Gabriel Renaud , Swapan Mallick , Karola Kirsanow , Peter H. Sudmant , Joshua G. Schraiber , Sergi Castellano , Mark Lipson , Bonnie Berger , Christos Economou , Ruth Bollongino , Qiaomei Fu , Kirsten I. Bos , Susanne Nordenfelt , Heng Li , Cesare de Filippo , Kay Pr\u00fcfer , Susanna Sawyer , Cosimo Posth , Wolfgang Haak , Fredrik Hallgren , Elin Fornander , Nadin Rohland , Dominique Delsate , Michael Francken , Jean-Michel Guinet , Joachim Wahl , George Ayodo , Hamza A. Babiker , Graciela Bailliet , Elena Balanovska , Oleg Balanovsky , Ramiro Barrantes , Gabriel Bedoya , Haim Ben-Ami , Judit Bene , Fouad Berrada , Claudio M. Bravi , Francesca Brisighelli , George B. J. Busby , Francesco Cali , Mikhail Churnosov , David E. C. Cole , Daniel Corach , Larissa Damba , George van Driem , Stanislav Dryomov , Jean-Michel Dugoujon , Sardana A. Fedorova , Irene Gallego Romero , Marina Gubina , Michael Hammer , Brenna M. Henn , Tor Hervig , Ugur Hodoglugil , Aashish R. Jha , Sena Karachanak-Yankova , Rita Khusainova , Elza Khusnutdinova , Rick Kittles , Toomas Kivisild , William Klitz , Vaidutis Ku\u010dinskas , Alena Kushniarevich , Leila Laredj , Sergey Litvinov , Theologos Loukidis , Robert W. Mahley , B\u00e9la Melegh , Ene Metspalu , Julio Molina , Joanna Mountain , Klemetti N\u00e4kk\u00e4l\u00e4j\u00e4rvi , Desislava Nesheva , Thomas Nyambo , Ludmila Osipova , J\u00fcri Parik , Fedor Platonov , Olga Posukh , Valentino Romano , Francisco Rothhammer , Igor Rudan , Ruslan Ruizbakiev , Hovhannes Sahakyan , Antti Sajantila , Antonio Salas , Elena B. Starikovskaya , Ayele Tarekegn , Draga Toncheva , Shahlo Turdikulova , Ingrida Uktveryte , Olga Utevska , Ren\u00e9 Vasquez , Mercedes Villena , Mikhail Voevoda , Cheryl A. Winkler , Levon Yepiskoposyan , Pierre Zalloua , Tatijana Zemunik , Alan Cooper , Cristian Capelli , Mark G. Thomas , Andres Ruiz-Linares , Sarah A. Tishkoff , Lalji Singh , Kumarasamy Thangaraj , Richard Villems , David Comas , Rem Sukernik , Mait Metspalu , Matthias Meyer , Evan E. Eichler , Joachim Burger , Montgomery Slatkin , Svante P\u00e4\u00e4bo , Janet Kelso , David Reich , and Johannes Krause . [n.d.]. Ancient Human Genomes Suggest Three Ancestral Populations for Present-Day Europeans. 513 , 7518 ([n. d.]), 409 -- 413 . https:\/\/doi.org\/10.1038\/nature13673 10.1038\/nature13673 Iosif Lazaridis, Nick Patterson, Alissa Mittnik, Gabriel Renaud, Swapan Mallick, Karola Kirsanow, Peter H. Sudmant, Joshua G. Schraiber, Sergi Castellano, Mark Lipson, Bonnie Berger, Christos Economou, Ruth Bollongino, Qiaomei Fu, Kirsten I. Bos, Susanne Nordenfelt, Heng Li, Cesare de Filippo, Kay Pr\u00fcfer, Susanna Sawyer, Cosimo Posth, Wolfgang Haak, Fredrik Hallgren, Elin Fornander, Nadin Rohland, Dominique Delsate, Michael Francken, Jean-Michel Guinet, Joachim Wahl, George Ayodo, Hamza A. Babiker, Graciela Bailliet, Elena Balanovska, Oleg Balanovsky, Ramiro Barrantes, Gabriel Bedoya, Haim Ben-Ami, Judit Bene, Fouad Berrada, Claudio M. Bravi, Francesca Brisighelli, George B. J. Busby, Francesco Cali, Mikhail Churnosov, David E. C. Cole, Daniel Corach, Larissa Damba, George van Driem, Stanislav Dryomov, Jean-Michel Dugoujon, Sardana A. Fedorova, Irene Gallego Romero, Marina Gubina, Michael Hammer, Brenna M. Henn, Tor Hervig, Ugur Hodoglugil, Aashish R. Jha, Sena Karachanak-Yankova, Rita Khusainova, Elza Khusnutdinova, Rick Kittles, Toomas Kivisild, William Klitz, Vaidutis Ku\u010dinskas, Alena Kushniarevich, Leila Laredj, Sergey Litvinov, Theologos Loukidis, Robert W. Mahley, B\u00e9la Melegh, Ene Metspalu, Julio Molina, Joanna Mountain, Klemetti N\u00e4kk\u00e4l\u00e4j\u00e4rvi, Desislava Nesheva, Thomas Nyambo, Ludmila Osipova, J\u00fcri Parik, Fedor Platonov, Olga Posukh, Valentino Romano, Francisco Rothhammer, Igor Rudan, Ruslan Ruizbakiev, Hovhannes Sahakyan, Antti Sajantila, Antonio Salas, Elena B. Starikovskaya, Ayele Tarekegn, Draga Toncheva, Shahlo Turdikulova, Ingrida Uktveryte, Olga Utevska, Ren\u00e9 Vasquez, Mercedes Villena, Mikhail Voevoda, Cheryl A. Winkler, Levon Yepiskoposyan, Pierre Zalloua, Tatijana Zemunik, Alan Cooper, Cristian Capelli, Mark G. Thomas, Andres Ruiz-Linares, Sarah A. Tishkoff, Lalji Singh, Kumarasamy Thangaraj, Richard Villems, David Comas, Rem Sukernik, Mait Metspalu, Matthias Meyer, Evan E. Eichler, Joachim Burger, Montgomery Slatkin, Svante P\u00e4\u00e4bo, Janet Kelso, David Reich, and Johannes Krause. [n.d.]. Ancient Human Genomes Suggest Three Ancestral Populations for Present-Day Europeans. 513, 7518 ([n. d.]), 409--413. https:\/\/doi.org\/10.1038\/nature13673","journal-title":"Ancient Human Genomes Suggest Three Ancestral Populations for Present-Day Europeans."},{"key":"e_1_3_2_1_31_1","volume-title":"SphereFace: Deep Hypersphere Embedding for Face Recognition. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","author":"Liu Weiyang","year":"2017","unstructured":"Weiyang Liu , Yandong Wen , Zhiding Yu , Ming Li , Bhiksha Raj , and Le Song . [n.d.]. SphereFace: Deep Hypersphere Embedding for Face Recognition. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) ( Honolulu, HI , 2017 -07). IEEE, 6738--6746. https:\/\/doi.org\/10.1109\/CVPR.2017.713 10.1109\/CVPR.2017.713 Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. [n.d.]. SphereFace: Deep Hypersphere Embedding for Face Recognition. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Honolulu, HI, 2017-07). IEEE, 6738--6746. https:\/\/doi.org\/10.1109\/CVPR.2017.713"},{"key":"e_1_3_2_1_32_1","unstructured":"Michele Merler Nalini Ratha Rogerio S. Feris and John R. Smith. [n.d.]. Diversity in Faces. ([n.d.]). arXiv:1901.10436 [cs] http:\/\/arxiv.org\/abs\/1901.10436 Michele Merler Nalini Ratha Rogerio S. Feris and John R. Smith. [n.d.]. Diversity in Faces. ([n.d.]). arXiv:1901.10436 [cs] http:\/\/arxiv.org\/abs\/1901.10436"},{"key":"e_1_3_2_1_33_1","unstructured":"Alexander Monea. [n.d.]. Race and Computer Vision. ([n. d.]) 19. Alexander Monea. [n.d.]. Race and Computer Vision. ([n. d.]) 19."},{"key":"e_1_3_2_1_34_1","doi-asserted-by":"crossref","unstructured":"Aythami Morales Julian Fierrez Ruben Vera-Rodriguez and Ruben Tolosana. [n.d.]. SensitiveNets: Learning Agnostic Representations with Application to Face Images. ([n.d.]) 1--1. https:\/\/doi.org\/10.1109\/TPAMI.2020.3015420 10.1109\/TPAMI.2020.3015420\nAythami Morales Julian Fierrez Ruben Vera-Rodriguez and Ruben Tolosana. [n.d.]. SensitiveNets: Learning Agnostic Representations with Application to Face Images. ([n.d.]) 1--1. https:\/\/doi.org\/10.1109\/TPAMI.2020.3015420","DOI":"10.1109\/TPAMI.2020.3015420"},{"key":"e_1_3_2_1_35_1","doi-asserted-by":"crossref","unstructured":"Brian K. Obach. [n.d.]. Demonstrating the Social Construction of Race. 27 3 ([n.d.]) 252. https:\/\/doi.org\/10.2307\/1319325 arXiv:1319325 10.2307\/1319325\nBrian K. Obach. [n.d.]. Demonstrating the Social Construction of Race. 27 3 ([n.d.]) 252. https:\/\/doi.org\/10.2307\/1319325 arXiv:1319325","DOI":"10.2307\/1319325"},{"key":"e_1_3_2_1_36_1","unstructured":"Parmy Olson. [n.d.]. The Quiet Growth of Race-Detection Software Sparks Concerns Over Bias. ([n.d.]). https:\/\/www.wsj.com\/articles\/the-quiet-growth-of-race-detection-software-sparks-concerns-over-bias-11597378154 Parmy Olson. [n.d.]. The Quiet Growth of Race-Detection Software Sparks Concerns Over Bias. ([n.d.]). https:\/\/www.wsj.com\/articles\/the-quiet-growth-of-race-detection-software-sparks-concerns-over-bias-11597378154"},{"volume-title":"PyTorch: An Imperative Style","author":"Paszke Adam","key":"e_1_3_2_1_37_1","unstructured":"Adam Paszke , Sam Gross , Francisco Massa , Adam Lerer , James Bradbury , Gregory Chanan , Trevor Killeen , Zeming Lin , Natalia Gimelshein , Luca Antiga , Alban Desmaison , Andreas Kopf , Edward Yang , Zachary DeVito , Martin Raison , Alykhan Tejani , Sasank Chilamkurthy , Benoit Steiner , Lu Fang , Junjie Bai , and Soumith Chintala . 2019. PyTorch: An Imperative Style , High-Performance Deep Learning Library . In Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alch\u00e9-Buc, E. Fox, and R. Garnett (Eds.). Curran Associates, Inc., 8024--8035. http:\/\/papers.neurips.cc\/paper\/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alch\u00e9-Buc, E. Fox, and R. Garnett (Eds.). Curran Associates, Inc., 8024--8035. http:\/\/papers.neurips.cc\/paper\/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf"},{"key":"e_1_3_2_1_38_1","first-page":"69","volume":"65","author":"Pauker Kristin","unstructured":"Kristin Pauker and Nalini Ambady . [n.d.]. Multiracial Faces: How Categorization Affects Memory at the Boundaries of Race. 65 , 1 ([n.d.]), 69 -- 86 . https:\/\/doi.org\/10.1111\/j.1540-4560.2008.01588.x 10.1111\/j.1540-4560.2008.01588.x Kristin Pauker and Nalini Ambady. [n.d.]. Multiracial Faces: How Categorization Affects Memory at the Boundaries of Race. 65, 1 ([n.d.]), 69--86. https:\/\/doi.org\/10.1111\/j.1540-4560.2008.01588.x","journal-title":"Boundaries of Race."},{"key":"e_1_3_2_1_39_1","unstructured":"P Jonathon Phillips. [n.d.]. An Other-Race Effect for Face Recognition Algorithms. ([n.d.]) 13. P Jonathon Phillips. [n.d.]. An Other-Race Effect for Face Recognition Algorithms. ([n.d.]) 13."},{"key":"e_1_3_2_1_40_1","unstructured":"Joseph P. Robinson Zaid Khan Yu Yin Ming Shao and Yun Fu. [n.d.]. Families In Wild Multimedia (FIW-MM): A Multi-Modal Database for Recognizing Kinship. ([n.d.]). arXiv:2007.14509 [cs] http:\/\/arxiv.org\/abs\/2007.14509 Joseph P. Robinson Zaid Khan Yu Yin Ming Shao and Yun Fu. [n.d.]. Families In Wild Multimedia (FIW-MM): A Multi-Modal Database for Recognizing Kinship. ([n.d.]). arXiv:2007.14509 [cs] http:\/\/arxiv.org\/abs\/2007.14509"},{"key":"e_1_3_2_1_41_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW50498.2020.00008"},{"key":"e_1_3_2_1_42_1","doi-asserted-by":"crossref","unstructured":"Morgan Klaus Scheuerman Kandrea Wade Caitlin Lustig and Jed R. Brubaker. [n.d.]. How We've Taught Algorithms to See Identity: Constructing Race and Gender in Image Databases for Facial Analysis. 4 ([n. d.]) 1--35. Issue CSCW1. https:\/\/doi.org\/10.1145\/3392866 10.1145\/3392866\nMorgan Klaus Scheuerman Kandrea Wade Caitlin Lustig and Jed R. Brubaker. [n.d.]. How We've Taught Algorithms to See Identity: Constructing Race and Gender in Image Databases for Facial Analysis. 4 ([n. d.]) 1--35. Issue CSCW1. https:\/\/doi.org\/10.1145\/3392866","DOI":"10.1145\/3392866"},{"key":"e_1_3_2_1_43_1","unstructured":"Leslie N. Smith. [n.d.]. A Disciplined Approach to Neural Network Hyper-Parameters: Part 1 - Learning Rate Batch Size Momentum and Weight Decay. ([n.d.]). arXiv:1803.09820 [cs stat] http:\/\/arxiv.org\/abs\/1803.09820 Leslie N. Smith. [n.d.]. A Disciplined Approach to Neural Network Hyper-Parameters: Part 1 - Learning Rate Batch Size Momentum and Weight Decay. ([n.d.]). arXiv:1803.09820 [cs stat] http:\/\/arxiv.org\/abs\/1803.09820"},{"key":"e_1_3_2_1_44_1","unstructured":"Till Speicher Muhammad Ali Giridhari Venkatadri Filipe Nunes Ribeiro George Arvanitakis Fabr\u00edcio Benevenuto Krishna P Gummadi Patrick Loiseau and Alan Mislove. [n.d.]. Potential for Discrimination in Online Targeted Advertising. ([n. d.]) 15. Till Speicher Muhammad Ali Giridhari Venkatadri Filipe Nunes Ribeiro George Arvanitakis Fabr\u00edcio Benevenuto Krishna P Gummadi Patrick Loiseau and Alan Mislove. [n.d.]. Potential for Discrimination in Online Targeted Advertising. ([n. d.]) 15."},{"volume-title":"International Handbooks of Population","author":"S\u00e1enz Rogelio","key":"e_1_3_2_1_45_1","unstructured":"Rogelio S\u00e1enz , David G. Embrick , and N\u00e9stor P. Rodr\u00edguez ( Eds .) . [n.d.]. The International Handbook of the Demography of Race and Ethnicity . International Handbooks of Population , Vol. 4 . Springer Netherlands . https:\/\/doi.org\/10.1007\/978-90-481-8891-8 10.1007\/978-90-481-8891-8 Rogelio S\u00e1enz, David G. Embrick, and N\u00e9stor P. Rodr\u00edguez (Eds.). [n.d.]. The International Handbook of the Demography of Race and Ethnicity. International Handbooks of Population, Vol. 4. Springer Netherlands. https:\/\/doi.org\/10.1007\/978-90-481-8891-8"},{"key":"e_1_3_2_1_46_1","first-page":"415","volume":"25","author":"Telles Edward E.","unstructured":"Edward E. Telles . [n.d.]. Racial Ambiguity among the Brazilian Population. 25 , 3 ([n. d.]), 415 -- 441 . https:\/\/doi.org\/10.1080\/01419870252932133 10.1080\/01419870252932133 Edward E. Telles. [n.d.]. Racial Ambiguity among the Brazilian Population. 25, 3 ([n. d.]), 415--441. https:\/\/doi.org\/10.1080\/01419870252932133","journal-title":"Brazilian Population."},{"key":"e_1_3_2_1_47_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2011.5995347"},{"key":"e_1_3_2_1_48_1","doi-asserted-by":"publisher","DOI":"10.1145\/3194770.3194776"},{"key":"e_1_3_2_1_49_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00078"},{"key":"e_1_3_2_1_50_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW.2017.248"},{"key":"e_1_3_2_1_51_1","unstructured":"Chiyuan Zhang Samy Bengio Moritz Hardt Benjamin Recht and Oriol Vinyals. [n.d.]. Understanding Deep Learning Requires Rethinking Generalization. ([n. d.]). arXiv:1611.03530 [cs] http:\/\/arxiv.org\/abs\/1611.03530 Chiyuan Zhang Samy Bengio Moritz Hardt Benjamin Recht and Oriol Vinyals. [n.d.]. Understanding Deep Learning Requires Rethinking Generalization. ([n. d.]). arXiv:1611.03530 [cs] http:\/\/arxiv.org\/abs\/1611.03530"},{"key":"e_1_3_2_1_52_1","first-page":"1499","volume":"23","author":"Zhang Kaipeng","unstructured":"Kaipeng Zhang , Zhanpeng Zhang , Zhifeng Li , and Yu Qiao . [n.d.]. Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks. 23 , 10 ([n.d.]), 1499 -- 1503 . https:\/\/doi.org\/10.1109\/LSP.2016.2603342 10.1109\/LSP.2016.2603342 Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao. [n.d.]. Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks. 23, 10 ([n.d.]), 1499--1503. https:\/\/doi.org\/10.1109\/LSP.2016.2603342","journal-title":"Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks."},{"key":"e_1_3_2_1_53_1","unstructured":"G\u00f6khan \u00d6zbulak Yusuf Aytar and Haz\u0131m Kemal Ekenel. [n.d.]. How Transferable Are CNN-Based Features for Age and Gender Classification? ([n.d.]). arXiv:1610.00134 [cs] http:\/\/arxiv.org\/abs\/1610.00134 G\u00f6khan \u00d6zbulak Yusuf Aytar and Haz\u0131m Kemal Ekenel. [n.d.]. How Transferable Are CNN-Based Features for Age and Gender Classification? ([n.d.]). arXiv:1610.00134 [cs] http:\/\/arxiv.org\/abs\/1610.00134"}],"event":{"name":"FAccT '21: 2021 ACM Conference on Fairness, Accountability, and Transparency","sponsor":["ACM Association for Computing Machinery"],"location":"Virtual Event Canada","acronym":"FAccT '21"},"container-title":["Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3442188.3445920","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,2,2]],"date-time":"2023-02-02T20:02:56Z","timestamp":1675368176000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3442188.3445920"}},"subtitle":["Usage and Consistency of Racial Categories in Computer Vision"],"short-title":[],"issued":{"date-parts":[[2021,3]]},"references-count":53,"alternative-id":["10.1145\/3442188.3445920","10.1145\/3442188"],"URL":"https:\/\/doi.org\/10.1145\/3442188.3445920","relation":{},"subject":[],"published":{"date-parts":[[2021,3]]},"assertion":[{"value":"2021-03-01","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}