{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,14]],"date-time":"2024-09-14T19:50:00Z","timestamp":1726343400320},"publisher-location":"New York, NY, USA","reference-count":29,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2021,1,2]]},"DOI":"10.1145\/3430984.3431022","type":"proceedings-article","created":{"date-parts":[[2020,12,28]],"date-time":"2020-12-28T05:34:44Z","timestamp":1609133684000},"page":"145-153","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":3,"title":["Domain-Specific, Semi-Supervised Transfer Learning for Medical Imaging"],"prefix":"10.1145","author":[{"given":"Jitender Singh","family":"Virk","sequence":"first","affiliation":[{"name":"Indian Institute of Technology Ropar"}]},{"given":"Deepti R.","family":"Bathula","sequence":"additional","affiliation":[{"name":"Indian Institute of Technology Ropar"}]}],"member":"320","published-online":{"date-parts":[[2021,1,2]]},"reference":[{"key":"e_1_3_2_1_1_1","unstructured":"David Berthelot Nicholas Carlini Ian\u00a0J. Goodfellow Nicolas Papernot Avital Oliver and Colin Raffel. 2019. MixMatch: A Holistic Approach to Semi-Supervised Learning. CoRR abs\/1905.02249(2019). arxiv:1905.02249http:\/\/arxiv.org\/abs\/1905.02249 David Berthelot Nicholas Carlini Ian\u00a0J. Goodfellow Nicolas Papernot Avital Oliver and Colin Raffel. 2019. MixMatch: A Holistic Approach to Semi-Supervised Learning. CoRR abs\/1905.02249(2019). arxiv:1905.02249http:\/\/arxiv.org\/abs\/1905.02249"},{"key":"#cr-split#-e_1_3_2_1_2_1.1","doi-asserted-by":"crossref","unstructured":"Kenneth Clark Bruce Vendt Kirk Smith John Freymann Justin Kirby Paul Koppel Stephen Moore Stanley Phillips David Maffitt Michael Pringle Lawrence Tarbox and Fred Prior. 2013. The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. 1045-1057\u00a0pages. https:\/\/doi.org\/10.1007\/s10278-013-9622-7 10.1007\/s10278-013-9622-7","DOI":"10.1007\/s10278-013-9622-7"},{"key":"#cr-split#-e_1_3_2_1_2_1.2","doi-asserted-by":"crossref","unstructured":"Kenneth Clark Bruce Vendt Kirk Smith John Freymann Justin Kirby Paul Koppel Stephen Moore Stanley Phillips David Maffitt Michael Pringle Lawrence Tarbox and Fred Prior. 2013. The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. 1045-1057\u00a0pages. https:\/\/doi.org\/10.1007\/s10278-013-9622-7","DOI":"10.1007\/s10278-013-9622-7"},{"key":"e_1_3_2_1_3_1","volume-title":"CVPR","author":"Deng J.","year":"2009","unstructured":"J. Deng , W. Dong , R. Socher , L.-J. Li , K. Li , and L. Fei-Fei . 2009. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09 . CVPR 2009 . J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. 2009. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09. CVPR 2009."},{"key":"e_1_3_2_1_4_1","unstructured":"Jose Dolz Karthik Gopinath Jing Yuan Herve Lombaert Christian Desrosiers and Ismail\u00a0Ben Ayed. 2018. HyperDense-Net: A hyper-densely connected CNN for multi-modal image segmentation. CoRR abs\/1804.02967(2018). arxiv:1804.02967http:\/\/arxiv.org\/abs\/1804.02967 Jose Dolz Karthik Gopinath Jing Yuan Herve Lombaert Christian Desrosiers and Ismail\u00a0Ben Ayed. 2018. HyperDense-Net: A hyper-densely connected CNN for multi-modal image segmentation. CoRR abs\/1804.02967(2018). arxiv:1804.02967http:\/\/arxiv.org\/abs\/1804.02967"},{"key":"e_1_3_2_1_5_1","unstructured":"fast.ai. 2020. Adaptive Concat Pool Homepage. https:\/\/tinyurl.com\/vmulq75 fast.ai. 2020. Adaptive Concat Pool Homepage. https:\/\/tinyurl.com\/vmulq75"},{"key":"e_1_3_2_1_6_1","unstructured":"Kaiming He Xiangyu Zhang Shaoqing Ren and Jian Sun. 2015. Deep Residual Learning for Image Recognition. CoRR abs\/1512.03385(2015). arxiv:1512.03385http:\/\/arxiv.org\/abs\/1512.03385 Kaiming He Xiangyu Zhang Shaoqing Ren and Jian Sun. 2015. Deep Residual Learning for Image Recognition. CoRR abs\/1512.03385(2015). arxiv:1512.03385http:\/\/arxiv.org\/abs\/1512.03385"},{"key":"e_1_3_2_1_7_1","unstructured":"Gao Huang Zhuang Liu and Kilian\u00a0Q. Weinberger. 2016. Densely Connected Convolutional Networks. CoRR abs\/1608.06993(2016). arxiv:1608.06993http:\/\/arxiv.org\/abs\/1608.06993 Gao Huang Zhuang Liu and Kilian\u00a0Q. Weinberger. 2016. Densely Connected Convolutional Networks. CoRR abs\/1608.06993(2016). arxiv:1608.06993http:\/\/arxiv.org\/abs\/1608.06993"},{"key":"e_1_3_2_1_8_1","unstructured":"Mi-Young Huh Pulkit Agrawal and Alexei\u00a0A. Efros. 2016. What makes ImageNet good for transfer learning?CoRR abs\/1608.08614(2016). arxiv:1608.08614http:\/\/arxiv.org\/abs\/1608.08614 Mi-Young Huh Pulkit Agrawal and Alexei\u00a0A. Efros. 2016. What makes ImageNet good for transfer learning?CoRR abs\/1608.08614(2016). arxiv:1608.08614http:\/\/arxiv.org\/abs\/1608.08614"},{"key":"e_1_3_2_1_9_1","volume-title":"Proceedings of the 32nd International Conference on Machine Learning(Proceedings of Machine Learning Research, Vol.\u00a037)","author":"Ioffe Sergey","year":"2015","unstructured":"Sergey Ioffe and Christian Szegedy . 2015 . Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift . In Proceedings of the 32nd International Conference on Machine Learning(Proceedings of Machine Learning Research, Vol.\u00a037) , Francis Bach and David Blei (Eds.). PMLR, Lille, France, 448\u2013456. http:\/\/proceedings.mlr.press\/v37\/ioffe15.html Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on Machine Learning(Proceedings of Machine Learning Research, Vol.\u00a037), Francis Bach and David Blei (Eds.). PMLR, Lille, France, 448\u2013456. http:\/\/proceedings.mlr.press\/v37\/ioffe15.html"},{"key":"e_1_3_2_1_10_1","unstructured":"JDebesh Jha Pia\u00a0H. Smedsrud Michael\u00a0A. Riegler Dag Johansen Thomas de Lange Pal Halvorsen and Havard\u00a0D. Johansen. 2019. ResUNet++: An Advanced Architecture for Medical Image Segmentation. CoRR abs\/1911.07067(2019). arxiv:1911.07067v1https:\/\/arxiv.org\/abs\/1911.07067v1 JDebesh Jha Pia\u00a0H. Smedsrud Michael\u00a0A. Riegler Dag Johansen Thomas de Lange Pal Halvorsen and Havard\u00a0D. Johansen. 2019. ResUNet++: An Advanced Architecture for Medical Image Segmentation. CoRR abs\/1911.07067(2019). arxiv:1911.07067v1https:\/\/arxiv.org\/abs\/1911.07067v1"},{"key":"e_1_3_2_1_11_1","unstructured":"Andrew\u00a0Zisserman Karen\u00a0Simonyan Andrea\u00a0Vedaldi. 2014. Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. CoRR abs\/1312.6034(2014). arxiv:1312.6034v2https:\/\/arxiv.org\/abs\/1312.6034 Andrew\u00a0Zisserman Karen\u00a0Simonyan Andrea\u00a0Vedaldi. 2014. Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. CoRR abs\/1312.6034(2014). arxiv:1312.6034v2https:\/\/arxiv.org\/abs\/1312.6034"},{"key":"e_1_3_2_1_12_1","unstructured":"Simon Kornblith Jonathon Shlens and Quoc\u00a0V. Le. 2018. Do Better ImageNet Models Transfer Better?CoRR abs\/1805.08974(2018). arxiv:1805.08974http:\/\/arxiv.org\/abs\/1805.08974 Simon Kornblith Jonathon Shlens and Quoc\u00a0V. Le. 2018. Do Better ImageNet Models Transfer Better?CoRR abs\/1805.08974(2018). arxiv:1805.08974http:\/\/arxiv.org\/abs\/1805.08974"},{"key":"e_1_3_2_1_13_1","unstructured":"Tsung-Yi Lin Priya Goyal Ross\u00a0B. Girshick Kaiming He and Piotr Doll\u00e1r. 2017. Focal Loss for Dense Object Detection. CoRR abs\/1708.02002(2017). arxiv:1708.02002http:\/\/arxiv.org\/abs\/1708.02002 Tsung-Yi Lin Priya Goyal Ross\u00a0B. Girshick Kaiming He and Piotr Doll\u00e1r. 2017. Focal Loss for Dense Object Detection. CoRR abs\/1708.02002(2017). arxiv:1708.02002http:\/\/arxiv.org\/abs\/1708.02002"},{"key":"e_1_3_2_1_14_1","unstructured":"Scott Lundberg and Su-In Lee. 2016. An unexpected unity among methods for interpreting model predictions. CoRR abs\/1611.07478(2016). arxiv:1611.07478http:\/\/arxiv.org\/abs\/1611.07478 Scott Lundberg and Su-In Lee. 2016. An unexpected unity among methods for interpreting model predictions. CoRR abs\/1611.07478(2016). arxiv:1611.07478http:\/\/arxiv.org\/abs\/1611.07478"},{"key":"e_1_3_2_1_15_1","volume-title":"Mish: A Self Regularized Non-Monotonic Neural Activation Function. CoRR abs\/1908.08681(2019). arxiv:1908.08681v2https:\/\/arxiv.org\/abs\/1908.08681v2","author":"Misra Diganta","year":"2019","unstructured":"Diganta Misra . 2019 . Mish: A Self Regularized Non-Monotonic Neural Activation Function. CoRR abs\/1908.08681(2019). arxiv:1908.08681v2https:\/\/arxiv.org\/abs\/1908.08681v2 Diganta Misra. 2019. Mish: A Self Regularized Non-Monotonic Neural Activation Function. CoRR abs\/1908.08681(2019). arxiv:1908.08681v2https:\/\/arxiv.org\/abs\/1908.08681v2"},{"key":"e_1_3_2_1_16_1","unstructured":"Maithra Raghu Katy Blumer Rory Sayres Ziad Obermeyer Sendhil Mullainathan and Jon\u00a0M. Kleinberg. 2018. Direct Uncertainty Prediction with Applications to Healthcare. CoRR abs\/1807.01771(2018). arxiv:1807.01771http:\/\/arxiv.org\/abs\/1807.01771 Maithra Raghu Katy Blumer Rory Sayres Ziad Obermeyer Sendhil Mullainathan and Jon\u00a0M. Kleinberg. 2018. Direct Uncertainty Prediction with Applications to Healthcare. CoRR abs\/1807.01771(2018). arxiv:1807.01771http:\/\/arxiv.org\/abs\/1807.01771"},{"key":"e_1_3_2_1_17_1","volume-title":"Transfusion: Understanding Transfer Learning with Applications to Medical Imaging. CoRR abs\/1902.07208(2019). arxiv:1902.07208http:\/\/arxiv.org\/abs\/1902.07208","author":"Raghu Maithra","year":"2019","unstructured":"Maithra Raghu , Chiyuan Zhang , Jon\u00a0 M. Kleinberg , and Samy Bengio . 2019 . Transfusion: Understanding Transfer Learning with Applications to Medical Imaging. CoRR abs\/1902.07208(2019). arxiv:1902.07208http:\/\/arxiv.org\/abs\/1902.07208 Maithra Raghu, Chiyuan Zhang, Jon\u00a0M. Kleinberg, and Samy Bengio. 2019. Transfusion: Understanding Transfer Learning with Applications to Medical Imaging. CoRR abs\/1902.07208(2019). arxiv:1902.07208http:\/\/arxiv.org\/abs\/1902.07208"},{"key":"e_1_3_2_1_18_1","unstructured":"Pranav Rajpurkar Jeremy Irvin Kaylie Zhu Brandon Yang Hershel Mehta Tony Duan Daisy\u00a0Yi Ding Aarti Bagul Curtis Langlotz Katie\u00a0S. Shpanskaya Matthew\u00a0P. Lungren and Andrew\u00a0Y. Ng. 2017. CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning. CoRR abs\/1711.05225(2017). arxiv:1711.05225http:\/\/arxiv.org\/abs\/1711.05225 Pranav Rajpurkar Jeremy Irvin Kaylie Zhu Brandon Yang Hershel Mehta Tony Duan Daisy\u00a0Yi Ding Aarti Bagul Curtis Langlotz Katie\u00a0S. Shpanskaya Matthew\u00a0P. Lungren and Andrew\u00a0Y. Ng. 2017. CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning. CoRR abs\/1711.05225(2017). arxiv:1711.05225http:\/\/arxiv.org\/abs\/1711.05225"},{"key":"e_1_3_2_1_19_1","unstructured":"Avanti Shrikumar Peyton Greenside Anna Shcherbina and Anshul Kundaje. 2016. Not Just a Black Box: Learning Important Features Through Propagating Activation Differences. CoRR abs\/1605.01713(2016). arxiv:1605.01713http:\/\/arxiv.org\/abs\/1605.01713 Avanti Shrikumar Peyton Greenside Anna Shcherbina and Anshul Kundaje. 2016. Not Just a Black Box: Learning Important Features Through Propagating Activation Differences. CoRR abs\/1605.01713(2016). arxiv:1605.01713http:\/\/arxiv.org\/abs\/1605.01713"},{"key":"e_1_3_2_1_20_1","unstructured":"Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. CoRR abs\/1409.1556(2014). http:\/\/arxiv.org\/abs\/1409.1556 Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. CoRR abs\/1409.1556(2014). http:\/\/arxiv.org\/abs\/1409.1556"},{"key":"e_1_3_2_1_21_1","unstructured":"Mukund Sundararajan Ankur Taly and Qiqi Yan. 2017. Axiomatic Attribution for Deep Networks. CoRR abs\/1703.01365(2017). arxiv:1703.01365http:\/\/arxiv.org\/abs\/1703.01365 Mukund Sundararajan Ankur Taly and Qiqi Yan. 2017. Axiomatic Attribution for Deep Networks. CoRR abs\/1703.01365(2017). arxiv:1703.01365http:\/\/arxiv.org\/abs\/1703.01365"},{"key":"e_1_3_2_1_22_1","unstructured":"Mingxing Tan and Quoc\u00a0V. Le. 2019. MixConv: Mixed Depthwise Convolutional Kernels. CoRR abs\/1907.09595(2019). arxiv:1907.09595http:\/\/arxiv.org\/abs\/1907.09595 Mingxing Tan and Quoc\u00a0V. Le. 2019. MixConv: Mixed Depthwise Convolutional Kernels. CoRR abs\/1907.09595(2019). arxiv:1907.09595http:\/\/arxiv.org\/abs\/1907.09595"},{"key":"e_1_3_2_1_23_1","unstructured":"Xiaosong Wang Yifan Peng Le Lu Zhiyong Lu Mohammadhadi Bagheri and Ronald\u00a0M. Summers. 2017. ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. CoRR abs\/1705.02315(2017). arxiv:1705.02315http:\/\/arxiv.org\/abs\/1705.02315 Xiaosong Wang Yifan Peng Le Lu Zhiyong Lu Mohammadhadi Bagheri and Ronald\u00a0M. Summers. 2017. ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. CoRR abs\/1705.02315(2017). arxiv:1705.02315http:\/\/arxiv.org\/abs\/1705.02315"},{"key":"e_1_3_2_1_24_1","volume-title":"CBAM: Convolutional Block Attention Module. CoRR abs\/1807.06521(2018). arxiv:1807.06521http:\/\/arxiv.org\/abs\/1807.06521","author":"Woo Sanghyun","year":"2018","unstructured":"Sanghyun Woo , Jongchan Park , Joon-Young Lee , and In\u00a0So Kweon . 2018 . CBAM: Convolutional Block Attention Module. CoRR abs\/1807.06521(2018). arxiv:1807.06521http:\/\/arxiv.org\/abs\/1807.06521 Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In\u00a0So Kweon. 2018. CBAM: Convolutional Block Attention Module. CoRR abs\/1807.06521(2018). arxiv:1807.06521http:\/\/arxiv.org\/abs\/1807.06521"},{"key":"e_1_3_2_1_25_1","unstructured":"Less Wright. 2020. Ranger Optimizer Homepage. https:\/\/tinyurl.com\/wp6ve3f Less Wright. 2020. Ranger Optimizer Homepage. https:\/\/tinyurl.com\/wp6ve3f"},{"key":"e_1_3_2_1_26_1","doi-asserted-by":"crossref","unstructured":"Qizhe Xie Minh-Thang Luong Eduard Hovy and Quoc\u00a0V. Le. 2019. Self-training with Noisy Student improves ImageNet classification. arxiv:1911.04252\u00a0[cs.LG] Qizhe Xie Minh-Thang Luong Eduard Hovy and Quoc\u00a0V. Le. 2019. Self-training with Noisy Student improves ImageNet classification. arxiv:1911.04252\u00a0[cs.LG]","DOI":"10.1109\/CVPR42600.2020.01070"},{"key":"e_1_3_2_1_27_1","unstructured":"Ke Yan Yifan Peng Veit Sandfort Mohammadhadi Bagheri Zhiyong Lu and Ronald\u00a0M. Summers. 2019. Holistic and Comprehensive Annotation of Clinically Significant Findings on Diverse CT Images: Learning from Radiology Reports and Label Ontology. CoRR abs\/1904.04661(2019). arxiv:1904.04661http:\/\/arxiv.org\/abs\/1904.04661 Ke Yan Yifan Peng Veit Sandfort Mohammadhadi Bagheri Zhiyong Lu and Ronald\u00a0M. Summers. 2019. Holistic and Comprehensive Annotation of Clinically Significant Findings on Diverse CT Images: Learning from Radiology Reports and Label Ontology. CoRR abs\/1904.04661(2019). arxiv:1904.04661http:\/\/arxiv.org\/abs\/1904.04661"},{"key":"e_1_3_2_1_28_1","unstructured":"Ke Yan Xiaosong Wang Le Lu and Ronald\u00a0M. Summers. 2017. DeepLesion: Automated Deep Mining Categorization and Detection of Significant Radiology Image Findings using Large-Scale Clinical Lesion Annotations. CoRR abs\/1710.01766(2017). arxiv:1710.01766http:\/\/arxiv.org\/abs\/1710.01766 Ke Yan Xiaosong Wang Le Lu and Ronald\u00a0M. Summers. 2017. DeepLesion: Automated Deep Mining Categorization and Detection of Significant Radiology Image Findings using Large-Scale Clinical Lesion Annotations. CoRR abs\/1710.01766(2017). arxiv:1710.01766http:\/\/arxiv.org\/abs\/1710.01766"}],"event":{"name":"CODS COMAD 2021: 8th ACM IKDD CODS and 26th COMAD","acronym":"CODS COMAD 2021","location":"Bangalore India"},"container-title":["Proceedings of the 3rd ACM India Joint International Conference on Data Science & Management of Data (8th ACM IKDD CODS & 26th COMAD)"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3430984.3431022","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,13]],"date-time":"2023-01-13T18:45:04Z","timestamp":1673635504000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3430984.3431022"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,1,2]]},"references-count":29,"alternative-id":["10.1145\/3430984.3431022","10.1145\/3430984"],"URL":"https:\/\/doi.org\/10.1145\/3430984.3431022","relation":{},"subject":[],"published":{"date-parts":[[2021,1,2]]},"assertion":[{"value":"2021-01-02","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}