{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T21:26:40Z","timestamp":1730323600391,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":17,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2021,1,2]]},"DOI":"10.1145\/3430984.3431016","type":"proceedings-article","created":{"date-parts":[[2020,12,28]],"date-time":"2020-12-28T05:34:44Z","timestamp":1609133684000},"page":"92-100","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":4,"title":["Bayesian Generative Adversarial Nets with Dropout Inference"],"prefix":"10.1145","author":[{"given":"Ragja","family":"Palakkadavath","sequence":"first","affiliation":[{"name":"Indian Institute of Space Science and Technology"}]},{"given":"P.K.","family":"Srijith","sequence":"additional","affiliation":[{"name":"Indian Institute of Technology Hyderabad"}]}],"member":"320","published-online":{"date-parts":[[2021,1,2]]},"reference":[{"volume-title":"On The Tradeoff Between Mode Collapse and Sample Quality in Generative Adversarial Networks. In 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP). 1184\u20131188","author":"Adiga S.","key":"e_1_3_2_1_1_1","unstructured":"S. Adiga , M.\u00a0 A. Attia , W. Chang , and R. Tandon . 2018 . On The Tradeoff Between Mode Collapse and Sample Quality in Generative Adversarial Networks. In 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP). 1184\u20131188 . S. Adiga, M.\u00a0A. Attia, W. Chang, and R. Tandon. 2018. On The Tradeoff Between Mode Collapse and Sample Quality in Generative Adversarial Networks. In 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP). 1184\u20131188."},{"key":"e_1_3_2_1_2_1","volume-title":"Proceedings of the 34th International Conference on Machine Learning -","volume":"70","author":"Arjovsky Martin","year":"2017","unstructured":"Martin Arjovsky , Soumith Chintala , and L\u00e9on Bottou . 2017 . Wasserstein Generative Adversarial Networks . In Proceedings of the 34th International Conference on Machine Learning - Volume 70 (Sydney, NSW, Australia) (ICML\u201917). JMLR.org, 214\u2013223. Martin Arjovsky, Soumith Chintala, and L\u00e9on Bottou. 2017. Wasserstein Generative Adversarial Networks. In Proceedings of the 34th International Conference on Machine Learning - Volume 70 (Sydney, NSW, Australia) (ICML\u201917). JMLR.org, 214\u2013223."},{"key":"e_1_3_2_1_3_1","volume-title":"Variational Inference: A Review for Statisticians.","author":"Blei M.","year":"2018","unstructured":"David\u00a0 M. Blei , Alp Kucukelbir , and Jon\u00a0 D. McAuliffe . 2018 . Variational Inference: A Review for Statisticians. (2018). https:\/\/arxiv.org\/abs\/1601.00670 David\u00a0M. Blei, Alp Kucukelbir, and Jon\u00a0D. McAuliffe. 2018. Variational Inference: A Review for Statisticians. (2018). https:\/\/arxiv.org\/abs\/1601.00670"},{"key":"e_1_3_2_1_4_1","volume-title":"Proceedings of the 31st International Conference on International Conference on Machine Learning -","volume":"32","author":"Chen Tianqi","year":"2014","unstructured":"Tianqi Chen , Emily\u00a0 B. Fox , and Carlos Guestrin . 2014 . Stochastic Gradient Hamiltonian Monte Carlo . In Proceedings of the 31st International Conference on International Conference on Machine Learning - Volume 32 (Beijing, China) (ICML\u201914). JMLR.org, II\u20131683\u2013II\u20131691. http:\/\/dl.acm.org\/citation.cfm?id=3044805.3045080 Tianqi Chen, Emily\u00a0B. Fox, and Carlos Guestrin. 2014. Stochastic Gradient Hamiltonian Monte Carlo. In Proceedings of the 31st International Conference on International Conference on Machine Learning - Volume 32 (Beijing, China) (ICML\u201914). JMLR.org, II\u20131683\u2013II\u20131691. http:\/\/dl.acm.org\/citation.cfm?id=3044805.3045080"},{"volume-title":"Advances in Neural Information Processing Systems 3 (NIPS*90), R.\u00a0Lippmann, J.\u00a0Moody, and D.\u00a0Touretzky (Eds.). Morgan Kaufman","author":"Denker S.","key":"e_1_3_2_1_5_1","unstructured":"J.\u00a0 S. Denker and Y. LeCun . 1991. transforming neural-net output levels to probability distributions . In Advances in Neural Information Processing Systems 3 (NIPS*90), R.\u00a0Lippmann, J.\u00a0Moody, and D.\u00a0Touretzky (Eds.). Morgan Kaufman , Denver, CO . J.\u00a0S. Denker and Y. LeCun. 1991. transforming neural-net output levels to probability distributions. In Advances in Neural Information Processing Systems 3 (NIPS*90), R.\u00a0Lippmann, J.\u00a0Moody, and D.\u00a0Touretzky (Eds.). Morgan Kaufman, Denver, CO."},{"key":"e_1_3_2_1_6_1","unstructured":"Vincent Dumoulin Ishmael Belghazi Ben Poole Olivier Mastropietro Alex Lamb Martin Arjovsky and Aaron Courville. 2016. Adversarially Learned Inference. arxiv:1606.00704\u00a0[stat.ML] Vincent Dumoulin Ishmael Belghazi Ben Poole Olivier Mastropietro Alex Lamb Martin Arjovsky and Aaron Courville. 2016. Adversarially Learned Inference. arxiv:1606.00704\u00a0[stat.ML]"},{"key":"e_1_3_2_1_8_1","unstructured":"Yarin Gal and Zoubin Ghahramani. 2015. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. arxiv:1506.02142\u00a0[stat.ML] Yarin Gal and Zoubin Ghahramani. 2015. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. arxiv:1506.02142\u00a0[stat.ML]"},{"key":"e_1_3_2_1_9_1","unstructured":"Golnaz Ghiasi Tsung-Yi Lin and Quoc\u00a0V. Le. 2018. DropBlock: A regularization method for convolutional networks. arxiv:1810.12890\u00a0[cs.CV] Golnaz Ghiasi Tsung-Yi Lin and Quoc\u00a0V. Le. 2018. DropBlock: A regularization method for convolutional networks. arxiv:1810.12890\u00a0[cs.CV]"},{"key":"e_1_3_2_1_10_1","volume-title":"Proceedings of the 27th International Conference on Neural Information Processing Systems -","volume":"2","author":"Goodfellow J.","year":"2014","unstructured":"Ian\u00a0 J. Goodfellow , Jean Pouget-Abadie , Mehdi Mirza , Bing Xu , David Warde-Farley , Sherjil Ozair , Aaron Courville , and Yoshua Bengio . 2014 . Generative Adversarial Nets . In Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2 (Montreal, Canada) (NIPS\u201914). MIT Press, Cambridge, MA, USA, 2672\u20132680. http:\/\/dl.acm.org\/citation.cfm?id=2969033.2969125 Ian\u00a0J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial Nets. In Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2 (Montreal, Canada) (NIPS\u201914). MIT Press, Cambridge, MA, USA, 2672\u20132680. http:\/\/dl.acm.org\/citation.cfm?id=2969033.2969125"},{"volume-title":"Advances in Neural Information Processing Systems 24, J.\u00a0Shawe-Taylor, R.\u00a0S. Zemel, P.\u00a0L. Bartlett, F.\u00a0Pereira, and K.\u00a0Q. Weinberger(Eds.). Curran Associates","author":"Graves Alex","key":"e_1_3_2_1_11_1","unstructured":"Alex Graves . 2011. Practical Variational Inference for Neural Networks . In Advances in Neural Information Processing Systems 24, J.\u00a0Shawe-Taylor, R.\u00a0S. Zemel, P.\u00a0L. Bartlett, F.\u00a0Pereira, and K.\u00a0Q. Weinberger(Eds.). Curran Associates , Inc ., 2348\u20132356. http:\/\/papers.nips.cc\/paper\/4329-practical-variational-inference-for-neural-networks.pdf Alex Graves. 2011. Practical Variational Inference for Neural Networks. In Advances in Neural Information Processing Systems 24, J.\u00a0Shawe-Taylor, R.\u00a0S. Zemel, P.\u00a0L. Bartlett, F.\u00a0Pereira, and K.\u00a0Q. Weinberger(Eds.). Curran Associates, Inc., 2348\u20132356. http:\/\/papers.nips.cc\/paper\/4329-practical-variational-inference-for-neural-networks.pdf"},{"key":"e_1_3_2_1_12_1","unstructured":"Jos\u00e9\u00a0Miguel Hern\u00e1ndez-Lobato and Ryan\u00a0P. Adams. 2015. Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks. arxiv:1502.05336\u00a0[stat.ML] Jos\u00e9\u00a0Miguel Hern\u00e1ndez-Lobato and Ryan\u00a0P. Adams. 2015. Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks. arxiv:1502.05336\u00a0[stat.ML]"},{"key":"e_1_3_2_1_13_1","unstructured":"Diederik\u00a0P Kingma and Max Welling. 2013. Auto-Encoding Variational Bayes. arxiv:1312.6114\u00a0[stat.ML] Diederik\u00a0P Kingma and Max Welling. 2013. Auto-Encoding Variational Bayes. arxiv:1312.6114\u00a0[stat.ML]"},{"key":"e_1_3_2_1_14_1","unstructured":"Yann LeCun and Corinna Cortes. 2010. MNIST handwritten digit database. http:\/\/yann.lecun.com\/exdb\/mnist\/. (2010). http:\/\/yann.lecun.com\/exdb\/mnist\/ Yann LeCun and Corinna Cortes. 2010. MNIST handwritten digit database. http:\/\/yann.lecun.com\/exdb\/mnist\/. (2010). http:\/\/yann.lecun.com\/exdb\/mnist\/"},{"key":"e_1_3_2_1_16_1","volume-title":"Bayesian GAN. In Proceedings of the 31st International Conference on Neural Information Processing Systems","author":"Saatchi Yunus","year":"2017","unstructured":"Yunus Saatchi and Andrew\u00a0Gordon Wilson . 2017 . Bayesian GAN. In Proceedings of the 31st International Conference on Neural Information Processing Systems ( Long Beach, California, USA) (NIPS\u201917). Curran Associates Inc., USA, 3625\u20133634. http:\/\/dl.acm.org\/citation.cfm?id=3294996.3295120 Yunus Saatchi and Andrew\u00a0Gordon Wilson. 2017. Bayesian GAN. In Proceedings of the 31st International Conference on Neural Information Processing Systems (Long Beach, California, USA) (NIPS\u201917). Curran Associates Inc., USA, 3625\u20133634. http:\/\/dl.acm.org\/citation.cfm?id=3294996.3295120"},{"key":"e_1_3_2_1_17_1","volume-title":"Proceedings of the 31st International Conference on Neural Information Processing Systems","author":"Srivastava Akash","year":"2017","unstructured":"Akash Srivastava , Lazar Valkov , Chris Russell , Michael\u00a0 U. Gutmann , and Charles Sutton . 2017 . VEEGAN: Reducing Mode Collapse in GANs Using Implicit Variational Learning . In Proceedings of the 31st International Conference on Neural Information Processing Systems ( Long Beach, California, USA) (NIPS\u201917). Curran Associates Inc., Red Hook, NY, USA, 3310\u20133320. Akash Srivastava, Lazar Valkov, Chris Russell, Michael\u00a0U. Gutmann, and Charles Sutton. 2017. VEEGAN: Reducing Mode Collapse in GANs Using Implicit Variational Learning. In Proceedings of the 31st International Conference on Neural Information Processing Systems(Long Beach, California, USA) (NIPS\u201917). Curran Associates Inc., Red Hook, NY, USA, 3310\u20133320."},{"key":"e_1_3_2_1_18_1","first-page":"1","article-title":"Dropout: A Simple Way to Prevent Neural Networks from Overfitting","volume":"15","author":"Srivastava Nitish","year":"2014","unstructured":"Nitish Srivastava , Geoffrey Hinton , Alex Krizhevsky , Ilya Sutskever , and Ruslan Salakhutdinov . 2014 . Dropout: A Simple Way to Prevent Neural Networks from Overfitting . J. Mach. Learn. Res. 15 , 1 (Jan. 2014), 1929\u20131958. http:\/\/dl.acm.org\/citation.cfm?id=2627435.2670313 Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 15, 1 (Jan. 2014), 1929\u20131958. http:\/\/dl.acm.org\/citation.cfm?id=2627435.2670313","journal-title":"J. Mach. Learn. Res."},{"key":"e_1_3_2_1_19_1","unstructured":"Han Xiao Kashif Rasul and Roland Vollgraf. 2017. Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms. arxiv:1708.07747\u00a0[cs.LG] Han Xiao Kashif Rasul and Roland Vollgraf. 2017. Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms. arxiv:1708.07747\u00a0[cs.LG]"}],"event":{"name":"CODS COMAD 2021: 8th ACM IKDD CODS and 26th COMAD","acronym":"CODS COMAD 2021","location":"Bangalore India"},"container-title":["Proceedings of the 3rd ACM India Joint International Conference on Data Science & Management of Data (8th ACM IKDD CODS & 26th COMAD)"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3430984.3431016","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,13]],"date-time":"2023-01-13T18:43:06Z","timestamp":1673635386000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3430984.3431016"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,1,2]]},"references-count":17,"alternative-id":["10.1145\/3430984.3431016","10.1145\/3430984"],"URL":"https:\/\/doi.org\/10.1145\/3430984.3431016","relation":{},"subject":[],"published":{"date-parts":[[2021,1,2]]},"assertion":[{"value":"2021-01-02","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}