{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T21:26:36Z","timestamp":1730323596711,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":28,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2021,1,2]]},"DOI":"10.1145\/3430984.3431009","type":"proceedings-article","created":{"date-parts":[[2020,12,28]],"date-time":"2020-12-28T05:34:44Z","timestamp":1609133684000},"page":"29-37","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":0,"title":["A semi-supervised approach to growing classification trees"],"prefix":"10.1145","author":[{"given":"Sudarsun","family":"Santhiappan","sequence":"first","affiliation":[{"name":"IIT Madras"}]},{"given":"Balaraman","family":"Ravindran","sequence":"additional","affiliation":[{"name":"Indian Institute of Technology Madras"}]}],"member":"320","published-online":{"date-parts":[[2021,1,2]]},"reference":[{"volume-title":"Reproducing Kernel Hilbert Space in Probability and Statistics","author":"Berlinet Alain","key":"e_1_3_2_1_1_1","unstructured":"Alain Berlinet and Christine Thomas-Agnan . 2004. Reproducing Kernel Hilbert Space in Probability and Statistics . Springer , Springer Science . 1\u2013355 pages. https:\/\/doi.org\/10.1007\/978-1-4419-9096-9 10.1007\/978-1-4419-9096-9 Alain Berlinet and Christine Thomas-Agnan. 2004. Reproducing Kernel Hilbert Space in Probability and Statistics. Springer, Springer Science. 1\u2013355 pages. https:\/\/doi.org\/10.1007\/978-1-4419-9096-9"},{"key":"e_1_3_2_1_2_1","unstructured":"Hendrik Blockeel Luc\u00a0De Raedt and Jan Ramon. 2000. Top-down induction of clustering trees. CoRR cs.LG\/0011032(2000) 55\u201363. https:\/\/arxiv.org\/abs\/cs\/0011032 Hendrik Blockeel Luc\u00a0De Raedt and Jan Ramon. 2000. Top-down induction of clustering trees. CoRR cs.LG\/0011032(2000) 55\u201363. https:\/\/arxiv.org\/abs\/cs\/0011032"},{"key":"e_1_3_2_1_3_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neunet.2013.11.010"},{"key":"e_1_3_2_1_4_1","unstructured":"Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:\/\/archive.ics.uci.edu\/ml Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:\/\/archive.ics.uci.edu\/ml"},{"key":"e_1_3_2_1_5_1","volume-title":"Explaining Explanations: An Overview of Interpretability of Machine Learning. 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA) 5 (Oct 2018","author":"Gilpin H.","year":"2018","unstructured":"Leilani\u00a0 H. Gilpin , David Bau , Ben\u00a0 Z. Yuan , Ayesha Bajwa , Michael Specter , and Lalana Kagal . 2018 . Explaining Explanations: An Overview of Interpretability of Machine Learning. 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA) 5 (Oct 2018 ), 80\u201389. https:\/\/doi.org\/10.1109\/dsaa.2018.00018 10.1109\/dsaa.2018.00018 Leilani\u00a0H. Gilpin, David Bau, Ben\u00a0Z. Yuan, Ayesha Bajwa, Michael Specter, and Lalana Kagal. 2018. Explaining Explanations: An Overview of Interpretability of Machine Learning. 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA) 5 (Oct 2018), 80\u201389. https:\/\/doi.org\/10.1109\/dsaa.2018.00018"},{"key":"e_1_3_2_1_6_1","unstructured":"Arthur Gretton Karsten\u00a0M. Borgwardt Malte\u00a0J. Rasch Bernhard Sch\u00f6lkopf and Alexander\u00a0J. Smola. 2008. A Kernel Method for the Two-Sample Problem. CoRR abs\/0805.2368(2008) 1\u20138. arxiv:0805.2368http:\/\/arxiv.org\/abs\/0805.2368 Arthur Gretton Karsten\u00a0M. Borgwardt Malte\u00a0J. Rasch Bernhard Sch\u00f6lkopf and Alexander\u00a0J. Smola. 2008. A Kernel Method for the Two-Sample Problem. CoRR abs\/0805.2368(2008) 1\u20138. arxiv:0805.2368http:\/\/arxiv.org\/abs\/0805.2368"},{"key":"e_1_3_2_1_7_1","volume-title":"Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics(Proceedings of Machine Learning Research, Vol.\u00a084)","author":"Hara Satoshi","year":"2018","unstructured":"Satoshi Hara and Kohei Hayashi . 2018 . Making Tree Ensembles Interpretable: A Bayesian Model Selection Approach . In Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics(Proceedings of Machine Learning Research, Vol.\u00a084) , Amos Storkey and Fernando Perez-Cruz (Eds.). PMLR, Playa Blanca, Lanzarote, Canary Islands, 77\u201385. http:\/\/proceedings.mlr.press\/v84\/hara18a.html Satoshi Hara and Kohei Hayashi. 2018. Making Tree Ensembles Interpretable: A Bayesian Model Selection Approach. In Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics(Proceedings of Machine Learning Research, Vol.\u00a084), Amos Storkey and Fernando Perez-Cruz (Eds.). PMLR, Playa Blanca, Lanzarote, Canary Islands, 77\u201385. http:\/\/proceedings.mlr.press\/v84\/hara18a.html"},{"key":"e_1_3_2_1_8_1","doi-asserted-by":"publisher","DOI":"10.1214\/009053607000000677"},{"key":"e_1_3_2_1_9_1","volume-title":"Proceedings of the 31st International Conference on Machine Learning(Proceedings of Machine Learning Research, Vol.\u00a032)","author":"Iyer Arun","year":"2014","unstructured":"Arun Iyer , Saketha Nath , and Sunita Sarawagi . 2014 . Maximum Mean Discrepancy for Class Ratio Estimation: Convergence Bounds and Kernel Selection . In Proceedings of the 31st International Conference on Machine Learning(Proceedings of Machine Learning Research, Vol.\u00a032) , Eric\u00a0P. Xing and Tony Jebara (Eds.). PMLR, Bejing, China, 530\u2013538. http:\/\/proceedings.mlr.press\/v32\/iyer14.html Arun Iyer, Saketha Nath, and Sunita Sarawagi. 2014. Maximum Mean Discrepancy for Class Ratio Estimation: Convergence Bounds and Kernel Selection. In Proceedings of the 31st International Conference on Machine Learning(Proceedings of Machine Learning Research, Vol.\u00a032), Eric\u00a0P. Xing and Tony Jebara (Eds.). PMLR, Bejing, China, 530\u2013538. http:\/\/proceedings.mlr.press\/v32\/iyer14.html"},{"key":"e_1_3_2_1_10_1","first-page":"257","article-title":"Semi-supervised learning with trees. In Advances in neural information processing systems. MIT, Department of Brain and Cognitive Sciences, MIT, Cambridge","volume":"02139","author":"Kemp Charles","year":"2004","unstructured":"Charles Kemp , Thomas\u00a0 L Griffiths , Sean Stromsten , and Joshua\u00a0 B Tenenbaum . 2004 . Semi-supervised learning with trees. In Advances in neural information processing systems. MIT, Department of Brain and Cognitive Sciences, MIT, Cambridge , MA 02139 , 257 \u2013 264 . Charles Kemp, Thomas\u00a0L Griffiths, Sean Stromsten, and Joshua\u00a0B Tenenbaum. 2004. Semi-supervised learning with trees. In Advances in neural information processing systems. MIT, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, 257\u2013264.","journal-title":"MA"},{"key":"e_1_3_2_1_11_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2016.04.016"},{"key":"e_1_3_2_1_12_1","volume-title":"lp-Norm Multiple Kernel Learning.Journal of Machine Learning Research 12","author":"Kloft Marius","year":"2011","unstructured":"Marius Kloft , Ulf Brefeld , S\u00f6ren Sonnenburg , and Alexander Zien . 2011. lp-Norm Multiple Kernel Learning.Journal of Machine Learning Research 12 ( 2011 ), 953\u2013997. http:\/\/dblp.uni-trier.de\/db\/journals\/jmlr\/jmlr12.html#KloftBSZ11 Marius Kloft, Ulf Brefeld, S\u00f6ren Sonnenburg, and Alexander Zien. 2011. lp-Norm Multiple Kernel Learning.Journal of Machine Learning Research 12 (2011), 953\u2013997. http:\/\/dblp.uni-trier.de\/db\/journals\/jmlr\/jmlr12.html#KloftBSZ11"},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2009.5459198"},{"key":"e_1_3_2_1_14_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10844-017-0457-4"},{"key":"e_1_3_2_1_15_1","unstructured":"Heifeng Li. 2019. Smile - Statistical Machine Intelligence and Learning Engine. https:\/\/haifengl.github.io\/ Heifeng Li. 2019. Smile - Statistical Machine Intelligence and Learning Engine. https:\/\/haifengl.github.io\/"},{"key":"e_1_3_2_1_16_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2013.70"},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"publisher","DOI":"10.5555\/1248547.1248642"},{"volume-title":"Handbook of Statistical Analysis and Data Mining Applications","author":"Nisbet Robert","key":"e_1_3_2_1_18_1","unstructured":"Robert Nisbet , Gary Miner , and Ken Yale . 2018. Handbook of Statistical Analysis and Data Mining Applications ( Second Edition). In Handbook of Statistical Analysis and Data Mining Applications (Second Edition) (second editioned.). Academic Press , Boston. https:\/\/doi.org\/10.1016\/B978-0-12-416632-5.09989-8 10.1016\/B978-0-12-416632-5.09989-8 Robert Nisbet, Gary Miner, and Ken Yale. 2018. Handbook of Statistical Analysis and Data Mining Applications (Second Edition). In Handbook of Statistical Analysis and Data Mining Applications (Second Edition) (second editioned.). Academic Press, Boston. https:\/\/doi.org\/10.1016\/B978-0-12-416632-5.09989-8"},{"volume-title":"Improving the explainability of Random Forest classifier \u2013 user centered approach","author":"Petkovic Dragutin","key":"e_1_3_2_1_19_1","unstructured":"Dragutin Petkovic , Russ Altman , Mike Wong , and Arthur Vigil . 2018. Improving the explainability of Random Forest classifier \u2013 user centered approach . In Improving the explainability of Random Forest classifier \u2013 user centered approach . World Scientific Publishing Company , San Francisco State University, 204\u2013215. https:\/\/doi.org\/10.1142\/9789813235533_0019 10.1142\/9789813235533_0019 Dragutin Petkovic, Russ Altman, Mike Wong, and Arthur Vigil. 2018. Improving the explainability of Random Forest classifier \u2013 user centered approach. In Improving the explainability of Random Forest classifier \u2013 user centered approach. World Scientific Publishing Company, San Francisco State University, 204\u2013215. https:\/\/doi.org\/10.1142\/9789813235533_0019"},{"key":"e_1_3_2_1_20_1","doi-asserted-by":"publisher","DOI":"10.1162\/089976602753284446"},{"key":"e_1_3_2_1_21_1","doi-asserted-by":"publisher","DOI":"10.1214\/13-AOS1140"},{"key":"e_1_3_2_1_22_1","doi-asserted-by":"publisher","DOI":"10.5555\/1756006.1859901"},{"key":"e_1_3_2_1_23_1","doi-asserted-by":"publisher","DOI":"10.1007\/s13042-015-0328-7"},{"key":"e_1_3_2_1_24_1","volume-title":"Incremental Induction of Decision Trees. Machine Learning 4, 2 (01","author":"Utgoff E.","year":"1989","unstructured":"Paul\u00a0 E. Utgoff . 1989. Incremental Induction of Decision Trees. Machine Learning 4, 2 (01 Nov 1989 ), 161\u2013186. https:\/\/doi.org\/10.1023\/A:1022699900025 10.1023\/A:1022699900025 Paul\u00a0E. Utgoff. 1989. Incremental Induction of Decision Trees. Machine Learning 4, 2 (01 Nov 1989), 161\u2013186. https:\/\/doi.org\/10.1023\/A:1022699900025"},{"volume-title":"ICML. JMLR","author":"Zhang Kun","key":"e_1_3_2_1_25_1","unstructured":"Kun Zhang , Bernhard Sch\u00f6lkopf , Krikamol Muandet , and Zhikun Wang . 2013. Domain Adaptation under Target and Conditional Shift . In ICML. JMLR , Max Plank Institute for Intelligent Systems , T\u00fcbingen, Germany , 1\u20139. Kun Zhang, Bernhard Sch\u00f6lkopf, Krikamol Muandet, and Zhikun Wang. 2013. Domain Adaptation under Target and Conditional Shift. In ICML. JMLR, Max Plank Institute for Intelligent Systems, T\u00fcbingen, Germany, 1\u20139."},{"key":"e_1_3_2_1_26_1","doi-asserted-by":"publisher","DOI":"10.2200\/S00196ED1V01Y200906AIM006"},{"key":"e_1_3_2_1_27_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-66179-7_9"},{"volume-title":"SS-R: Semi-Supervised Recursive Learning Using Decision Trees. ACM, School of Engineering","author":"Zurn Jane\u00a0Brooks","key":"e_1_3_2_1_28_1","unstructured":"Jane\u00a0Brooks Zurn and Yuichi Motai . 2008. SS-R : Semi-Supervised Recursive Learning Using Decision Trees . In SS-R: Semi-Supervised Recursive Learning Using Decision Trees. ACM, School of Engineering , College of Engineering and Mathematics , University of Vermont, 1\u201327. Jane\u00a0Brooks Zurn and Yuichi Motai. 2008. SS-R : Semi-Supervised Recursive Learning Using Decision Trees. In SS-R: Semi-Supervised Recursive Learning Using Decision Trees. ACM, School of Engineering, College of Engineering and Mathematics, University of Vermont, 1\u201327."}],"event":{"name":"CODS COMAD 2021: 8th ACM IKDD CODS and 26th COMAD","acronym":"CODS COMAD 2021","location":"Bangalore India"},"container-title":["Proceedings of the 3rd ACM India Joint International Conference on Data Science & Management of Data (8th ACM IKDD CODS & 26th COMAD)"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3430984.3431009","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,13]],"date-time":"2023-01-13T18:41:41Z","timestamp":1673635301000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3430984.3431009"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,1,2]]},"references-count":28,"alternative-id":["10.1145\/3430984.3431009","10.1145\/3430984"],"URL":"https:\/\/doi.org\/10.1145\/3430984.3431009","relation":{},"subject":[],"published":{"date-parts":[[2021,1,2]]},"assertion":[{"value":"2021-01-02","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}