{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,5]],"date-time":"2024-09-05T02:05:39Z","timestamp":1725501939739},"reference-count":39,"publisher":"Association for Computing Machinery (ACM)","issue":"6","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":["ACM Trans. Graph."],"published-print":{"date-parts":[[2020,12,31]]},"abstract":"Monte Carlo integration is an efficient method to solve a high-dimensional integral in light transport simulation, but it typically produces noisy images due to its stochastic nature. Many existing methods, such as image denoising and gradient-domain reconstruction, aim to mitigate this noise by introducing some form of correlation among pixels. While those existing methods reduce noise, they are known to still suffer from method-specific residual noise or systematic errors. We propose a unified framework that reduces such remaining errors. Our framework takes a pair of images, one with independent estimates, and the other with the corresponding correlated estimates. Correlated pixel estimates are generated by various existing methods such as denoising and gradient-domain rendering. Our framework then combines the two images via a novel combination kernel. We model our combination kernel as a weighting function with a deep neural network that exploits the correlation among pixel estimates. To improve the robustness of our framework for outliers, we additionally propose an extension to handle multiple image buffers. The results demonstrate that our unified framework can successfully reduce the error of existing methods while treating them as black-boxes.<\/jats:p>","DOI":"10.1145\/3414685.3417847","type":"journal-article","created":{"date-parts":[[2020,11,27]],"date-time":"2020-11-27T21:51:05Z","timestamp":1606513865000},"page":"1-12","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":16,"title":["Deep combiner for independent and correlated pixel estimates"],"prefix":"10.1145","volume":"39","author":[{"given":"Jonghee","family":"Back","sequence":"first","affiliation":[{"name":"Gwangju Institute of Science and Technology, South Korea"}]},{"given":"Binh-Son","family":"Hua","sequence":"additional","affiliation":[{"name":"VinAI Research, Vietnam and VinUniversity, Vietnam"}]},{"given":"Toshiya","family":"Hachisuka","sequence":"additional","affiliation":[{"name":"The University of Tokyo, Japan"}]},{"given":"Bochang","family":"Moon","sequence":"additional","affiliation":[{"name":"Gwangju Institute of Science and Technology, South Korea"}]}],"member":"320","published-online":{"date-parts":[[2020,11,27]]},"reference":[{"key":"e_1_2_2_1_1","unstructured":"Mart\u00edn Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dan Man\u00e9 Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Vi\u00e9gas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Mart\u00edn Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dan Man\u00e9 Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Vi\u00e9gas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems."},{"key":"e_1_2_2_2_1","doi-asserted-by":"publisher","DOI":"10.1111\/cgf.13548"},{"key":"e_1_2_2_3_1","doi-asserted-by":"publisher","DOI":"10.1145\/3072959.3073708"},{"key":"e_1_2_2_4_1","doi-asserted-by":"publisher","DOI":"10.1145\/3130800.3130886"},{"key":"e_1_2_2_5_1","volume-title":"Proceedings of the 13th Eurographics Workshop on Rendering (EGRW '02)","author":"Bekaert Philippe","year":"2002","unstructured":"Philippe Bekaert , Mateu Sbert , and John Halton . 2002 . Accelerating Path Tracing by Re-Using Paths . In Proceedings of the 13th Eurographics Workshop on Rendering (EGRW '02) . 125--134. Philippe Bekaert, Mateu Sbert, and John Halton. 2002. Accelerating Path Tracing by Re-Using Paths. In Proceedings of the 13th Eurographics Workshop on Rendering (EGRW '02). 125--134."},{"key":"e_1_2_2_6_1","volume-title":"Proceedings of the 10th European Conference on Computer Vision: Part II (ECCV '08)","author":"Bhat Pravin","unstructured":"Pravin Bhat , Brian Curless , Michael Cohen , and C. Lawrence Zitnick . 2008. Fourier Analysis of the 2D Screened Poisson Equation for Gradient Domain Problems . In Proceedings of the 10th European Conference on Computer Vision: Part II (ECCV '08) . 114--128. Pravin Bhat, Brian Curless, Michael Cohen, and C. Lawrence Zitnick. 2008. Fourier Analysis of the 2D Screened Poisson Equation for Gradient Domain Problems. In Proceedings of the 10th European Conference on Computer Vision: Part II (ECCV '08). 114--128."},{"key":"e_1_2_2_7_1","unstructured":"Benedikt Bitterli. 2016. Rendering resources. https:\/\/benedikt-bitterli.me\/resources\/. Benedikt Bitterli. 2016. Rendering resources. https:\/\/benedikt-bitterli.me\/resources\/."},{"key":"e_1_2_2_8_1","doi-asserted-by":"publisher","DOI":"10.5555\/3071773.3071785"},{"key":"e_1_2_2_9_1","doi-asserted-by":"publisher","DOI":"10.1111\/cgf.13231"},{"key":"e_1_2_2_10_1","article-title":"Interactive Reconstruction of Monte Carlo Image Sequences Using a Recurrent Denoising Autoencoder","volume":"36","author":"Alla Chaitanya Chakravarty R.","year":"2017","unstructured":"Chakravarty R. Alla Chaitanya , Anton S. Kaplanyan , Christoph Schied , Marco Salvi , Aaron Lefohn , Derek Nowrouzezahrai , and Timo Aila . 2017 . Interactive Reconstruction of Monte Carlo Image Sequences Using a Recurrent Denoising Autoencoder . ACM Trans. Graph. 36 , 4, Article 98 (2017), 12 pages. Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied, Marco Salvi, Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive Reconstruction of Monte Carlo Image Sequences Using a Recurrent Denoising Autoencoder. ACM Trans. Graph. 36, 4, Article 98 (2017), 12 pages.","journal-title":"ACM Trans. Graph."},{"key":"e_1_2_2_11_1","doi-asserted-by":"publisher","DOI":"10.1145\/3306346.3322954"},{"key":"e_1_2_2_12_1","doi-asserted-by":"publisher","DOI":"10.1145\/3355089.3356538"},{"key":"e_1_2_2_13_1","doi-asserted-by":"publisher","DOI":"10.1145\/1409060.1409083"},{"key":"e_1_2_2_14_1","doi-asserted-by":"publisher","DOI":"10.1111\/cgf.13652"},{"key":"e_1_2_2_15_1","unstructured":"Wenzel Jakob. 2010. Mitsuba renderer. Wenzel Jakob. 2010. Mitsuba renderer."},{"key":"e_1_2_2_16_1","volume-title":"Rendering Techniques '96","author":"Jensen Henrik Wann","unstructured":"Henrik Wann Jensen . 1996. Global Illumination using Photon Maps . In Rendering Techniques '96 . Springer Vienna , Vienna , 21--30. Henrik Wann Jensen. 1996. Global Illumination using Photon Maps. In Rendering Techniques '96. Springer Vienna, Vienna, 21--30."},{"key":"e_1_2_2_17_1","doi-asserted-by":"publisher","DOI":"10.1145\/15922.15902"},{"key":"e_1_2_2_18_1","doi-asserted-by":"publisher","DOI":"10.1145\/2766977"},{"key":"e_1_2_2_19_1","volume-title":"Interleaved Sampling. In Proceedings of the 12th Eurographics Workshop on Rendering Techniques. 269--276","author":"Keller Alexander","year":"2001","unstructured":"Alexander Keller and Wolfgang Heidrich . 2001 . Interleaved Sampling. In Proceedings of the 12th Eurographics Workshop on Rendering Techniques. 269--276 . Alexander Keller and Wolfgang Heidrich. 2001. Interleaved Sampling. In Proceedings of the 12th Eurographics Workshop on Rendering Techniques. 269--276."},{"key":"e_1_2_2_20_1","doi-asserted-by":"publisher","DOI":"10.1145\/3306346.3323038"},{"key":"e_1_2_2_21_1","doi-asserted-by":"publisher","DOI":"10.1145\/2766997"},{"key":"e_1_2_2_22_1","volume-title":"Adam: A Method for Stochastic Optimization. International Conference on Learning Representations","author":"Kingma Diederik","year":"2014","unstructured":"Diederik Kingma and Jimmy Ba . 2014 . Adam: A Method for Stochastic Optimization. International Conference on Learning Representations (2014). Diederik Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization. International Conference on Learning Representations (2014)."},{"key":"e_1_2_2_23_1","doi-asserted-by":"publisher","DOI":"10.1145\/2461912.2461943"},{"key":"e_1_2_2_24_1","doi-asserted-by":"publisher","DOI":"10.1145\/2366145.2366213"},{"key":"e_1_2_2_25_1","doi-asserted-by":"publisher","DOI":"10.1145\/318009.318015"},{"key":"e_1_2_2_26_1","doi-asserted-by":"publisher","DOI":"10.1109\/MSP.2011.2179329"},{"key":"e_1_2_2_27_1","doi-asserted-by":"publisher","DOI":"10.1145\/2641762"},{"key":"e_1_2_2_28_1","doi-asserted-by":"publisher","DOI":"10.1145\/2897824.2925936"},{"key":"e_1_2_2_29_1","doi-asserted-by":"publisher","DOI":"10.1145\/1618452.1618486"},{"key":"e_1_2_2_30_1","doi-asserted-by":"publisher","DOI":"10.1145\/3212511"},{"key":"e_1_2_2_31_1","volume-title":"U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention (MICCAI) (LNCS)","volume":"9351","author":"Ronneberger O.","unstructured":"O. Ronneberger , P. Fischer , and T. Brox . 2015 . U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention (MICCAI) (LNCS) , Vol. 9351 . Springer, 234--241. O. Ronneberger, P. Fischer, and T. Brox. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention (MICCAI) (LNCS), Vol. 9351. Springer, 234--241."},{"key":"e_1_2_2_32_1","doi-asserted-by":"publisher","DOI":"10.1145\/2070781.2024193"},{"key":"e_1_2_2_33_1","doi-asserted-by":"publisher","DOI":"10.1145\/2366145.2366214"},{"key":"e_1_2_2_34_1","doi-asserted-by":"publisher","DOI":"10.1111\/cgf.12219"},{"key":"e_1_2_2_35_1","doi-asserted-by":"publisher","DOI":"10.1080\/2151237X.2009.10129279"},{"key":"e_1_2_2_36_1","doi-asserted-by":"publisher","DOI":"10.1145\/2167076.2167083"},{"key":"e_1_2_2_37_1","volume-title":"How to SAIF-ly boost denoising performance","author":"Talebi Hossein","year":"2012","unstructured":"Hossein Talebi , Xiang Zhu , and Peyman Milanfar . 2012. How to SAIF-ly boost denoising performance . IEEE transactions on image processing 22 (12 2012 ), 16. Hossein Talebi, Xiang Zhu, and Peyman Milanfar. 2012. How to SAIF-ly boost denoising performance. IEEE transactions on image processing 22 (12 2012), 16."},{"key":"e_1_2_2_38_1","doi-asserted-by":"publisher","DOI":"10.1145\/3355089.3356547"},{"key":"e_1_2_2_39_1","doi-asserted-by":"publisher","DOI":"10.5555\/2816723.2816781"}],"container-title":["ACM Transactions on Graphics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3414685.3417847","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,4,19]],"date-time":"2023-04-19T10:45:17Z","timestamp":1681901117000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3414685.3417847"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,11,27]]},"references-count":39,"journal-issue":{"issue":"6","published-print":{"date-parts":[[2020,12,31]]}},"alternative-id":["10.1145\/3414685.3417847"],"URL":"https:\/\/doi.org\/10.1145\/3414685.3417847","relation":{},"ISSN":["0730-0301","1557-7368"],"issn-type":[{"value":"0730-0301","type":"print"},{"value":"1557-7368","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,11,27]]},"assertion":[{"value":"2020-11-27","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}