{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T14:26:15Z","timestamp":1740147975617,"version":"3.37.3"},"reference-count":61,"publisher":"Association for Computing Machinery (ACM)","issue":"6","funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"crossref","award":["61772048, U19B2039, U1811463, 61806014, 61672071 and 61632006"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]},{"name":"Beijing Outstanding Young Scientists Projects","award":["BJJWZYJH01201910005018"]},{"DOI":"10.13039\/501100017616","name":"Beijing Talents Project","doi-asserted-by":"crossref","award":["2017A24"],"id":[{"id":"10.13039\/501100017616","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":["ACM Trans. Knowl. Discov. Data"],"published-print":{"date-parts":[[2020,12,31]]},"abstract":"\n Linear discriminant analysis (LDA) is a well-known supervised method for dimensionality reduction in which the global structure of data can be preserved. The classical LDA is sensitive to the noises, and the projection direction of LDA cannot preserve the main energy. This article proposes a novel feature extraction model with\n l<\/jats:italic>\n 2,1<\/jats:sub>\n norm constraint based on LDA, termed as RALDA. This model preserves within-class local structure in the latent subspace according to the label information. To reduce information loss, it learns a projection matrix and an inverse projection matrix simultaneously. By introducing an implicit variable and matrix norm transformation, the alternating direction multiple method with updating variables is designed to solve the RALDA model. Moreover, both computational complexity and weak convergence property of the proposed algorithm are investigated. The experimental results on several public databases have demonstrated the effectiveness of our proposed method.\n <\/jats:p>","DOI":"10.1145\/3409478","type":"journal-article","created":{"date-parts":[[2020,9,29]],"date-time":"2020-09-29T04:10:30Z","timestamp":1601352630000},"page":"1-20","update-policy":"https:\/\/doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":5,"title":["Robust Adaptive Linear Discriminant Analysis with Bidirectional Reconstruction Constraint"],"prefix":"10.1145","volume":"14","author":[{"given":"Jipeng","family":"Guo","sequence":"first","affiliation":[{"name":"Beijing University of Technology, Beijing, China"}]},{"given":"Yanfeng","family":"Sun","sequence":"additional","affiliation":[{"name":"Beijing University of Technology, Beijing, China"}]},{"given":"Junbin","family":"Gao","sequence":"additional","affiliation":[{"name":"The University of Sydney, Australia"}]},{"given":"Yongli","family":"Hu","sequence":"additional","affiliation":[{"name":"Beijing University of Technology, Beijing, China"}]},{"given":"Baocai","family":"Yin","sequence":"additional","affiliation":[{"name":"Beijing University of Technology, Beijing, China"}]}],"member":"320","published-online":{"date-parts":[[2020,9,28]]},"reference":[{"key":"e_1_2_2_1_1","doi-asserted-by":"publisher","DOI":"10.1093\/bioinformatics\/btg062"},{"key":"e_1_2_2_2_1","doi-asserted-by":"publisher","DOI":"10.1109\/34.598228"},{"key":"e_1_2_2_3_1","doi-asserted-by":"crossref","unstructured":"S. Boyd N. Parikh E. Chu B. Peleato and J. Eckstein. 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends\u00ae in Machine Learning 3 1 (2011) 1--122. S. Boyd N. Parikh E. Chu B. Peleato and J. Eckstein. 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends\u00ae in Machine Learning 3 1 (2011) 1--122.","DOI":"10.1561\/2200000016"},{"key":"e_1_2_2_4_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.apal.2011.10.006"},{"key":"e_1_2_2_5_1","first-page":"1548","article-title":"Graph regularized nonnegative matrix factorization for data representation","volume":"33","author":"Cai D.","year":"2010","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"volume-title":"Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE, 1--7.","author":"Cai D.","key":"e_1_2_2_6_1"},{"key":"e_1_2_2_7_1","doi-asserted-by":"crossref","unstructured":"H. Chen J. Li J. Gao Y. Sun Y. Hu and B. Yin. 2019. Maximally correlated principal component analysis based on deep parameterization learning. ACM Transactions on Knowledge Discovery from Data 13 4 (2019) 1--17. H. Chen J. Li J. Gao Y. Sun Y. Hu and B. Yin. 2019. Maximally correlated principal component analysis based on deep parameterization learning. ACM Transactions on Knowledge Discovery from Data 13 4 (2019) 1--17.","DOI":"10.1145\/3332183"},{"key":"e_1_2_2_8_1","doi-asserted-by":"publisher","DOI":"10.3390\/rs10060836"},{"key":"e_1_2_2_9_1","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2018.2830186"},{"key":"e_1_2_2_10_1","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2019.2906302"},{"key":"e_1_2_2_11_1","doi-asserted-by":"publisher","DOI":"10.1109\/TNN.2011.2152852"},{"key":"e_1_2_2_12_1","doi-asserted-by":"crossref","unstructured":"D. B. Graham and N. M. Allinson. 1998. Characterising virtual eigensignatures for general purpose face recognition. In Face Recognition. Springer 446--456. D. B. Graham and N. M. Allinson. 1998. Characterising virtual eigensignatures for general purpose face recognition. In Face Recognition. Springer 446--456.","DOI":"10.1007\/978-3-642-72201-1_25"},{"key":"e_1_2_2_13_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.imavis.2009.08.002"},{"key":"e_1_2_2_14_1","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2923614"},{"volume-title":"Proceedings of the 2018 25th IEEE International Conference on Image Processing. 3378--3382","author":"Guo M.","key":"e_1_2_2_15_1"},{"volume":"2","volume-title":"Proceedings of the IEEE International Conference on Computer Vision","author":"He X.","key":"e_1_2_2_16_1"},{"volume-title":"Proceedings of the 16th International Conference on Neural Information Processing Systems. 153--160","author":"He X.","key":"e_1_2_2_17_1"},{"key":"e_1_2_2_18_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2005.55"},{"key":"e_1_2_2_19_1","first-page":"793","article-title":"Joint embedding learning and sparse regression: A framework for unsupervised feature selection","volume":"44","author":"Hou C.","year":"2013","journal-title":"IEEE Transactions on Cybernetics"},{"key":"e_1_2_2_20_1","doi-asserted-by":"publisher","DOI":"10.1109\/LGRS.2019.2894470"},{"key":"e_1_2_2_21_1","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2019.2913511"},{"volume-title":"Proceedings of the 32nd AAAI Conference on Artificial Intelligence. 1330--1337","author":"Hu X.","key":"e_1_2_2_22_1"},{"key":"e_1_2_2_23_1","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2920592"},{"key":"e_1_2_2_24_1","doi-asserted-by":"publisher","DOI":"10.1109\/5.726791"},{"key":"e_1_2_2_25_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2005.92"},{"key":"e_1_2_2_26_1","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2019.2910991"},{"volume-title":"Proceedings of the 53rd Annual Conference on Information Sciences and Systems. IEEE, 1--6.","author":"Li L.","key":"e_1_2_2_27_1"},{"volume-title":"Proceedings of the 26th International Joint Conference on Artificial Intelligence. 2201--2207","author":"Li X.","key":"e_1_2_2_28_1"},{"key":"e_1_2_2_29_1","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2018.2881211"},{"key":"e_1_2_2_30_1","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2019.2936855"},{"key":"e_1_2_2_31_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2010.05.016"},{"key":"e_1_2_2_32_1","unstructured":"Z. Lin M. Chen and Y. Ma. 2010. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055 (2010). Z. Lin M. Chen and Y. Ma. 2010. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055 (2010)."},{"key":"e_1_2_2_33_1","doi-asserted-by":"publisher","DOI":"10.1109\/TCYB.2018.2789524"},{"key":"e_1_2_2_34_1","doi-asserted-by":"publisher","DOI":"10.1109\/JERM.2019.2893587"},{"key":"e_1_2_2_35_1","unstructured":"S. A. Nene S. K. Nayar and H. Murase. 1996. object image library (coil-100). Technical Report Columbia University (1996). S. A. Nene S. K. Nayar and H. Murase. 1996. object image library (coil-100). Technical Report Columbia University (1996)."},{"volume-title":"Wang, and X. Li","year":"2020","author":"Nie F.","key":"e_1_2_2_36_1"},{"key":"e_1_2_2_37_1","doi-asserted-by":"publisher","DOI":"10.5555\/1625275.1625436"},{"volume-title":"Proceedings of theIEEE International Conference on Computer Vision. 225--232","author":"Patel V. M.","key":"e_1_2_2_38_1"},{"volume-title":"Proceedings of the International Joint Conference on Artifical Intelligence. 829--834","author":"Qiu X.","key":"e_1_2_2_39_1"},{"key":"e_1_2_2_40_1","doi-asserted-by":"publisher","DOI":"10.1126\/science.290.5500.2323"},{"volume-title":"Proceedings of 1994 IEEE Workshop on Applications of Computer Vision. 138--142","author":"Samaria F. S.","key":"e_1_2_2_41_1"},{"key":"e_1_2_2_42_1","doi-asserted-by":"publisher","DOI":"10.1038\/nrg2857"},{"key":"e_1_2_2_43_1","unstructured":"T. Sim S. Baker and M. Bsat. 2001. The CMU pose illumination and expression database of human faces. Carnegie Mellon University Technical Report CMU-RI-TR-OI-02 (2001). T. Sim S. Baker and M. Bsat. 2001. The CMU pose illumination and expression database of human faces. Carnegie Mellon University Technical Report CMU-RI-TR-OI-02 (2001)."},{"key":"e_1_2_2_44_1","doi-asserted-by":"publisher","DOI":"10.1145\/1143844.1143958"},{"volume-title":"Proceedings of the International Joint Conference on Artifical Intelligence. 2893--2900","author":"Wang B.","key":"e_1_2_2_45_1"},{"key":"e_1_2_2_46_1","doi-asserted-by":"publisher","DOI":"10.1016\/0169-7439(87)80084-9"},{"volume-title":"Proceedings of theAdvances in Neural Information Processing Systems. 2080--2088","author":"Wright J.","key":"e_1_2_2_47_1"},{"key":"e_1_2_2_48_1","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2012.2212721"},{"key":"e_1_2_2_49_1","doi-asserted-by":"publisher","DOI":"10.1109\/TIT.2012.2212415"},{"key":"e_1_2_2_50_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11042-018-6855-y"},{"key":"e_1_2_2_51_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2004.11.019"},{"key":"e_1_2_2_52_1","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2006.160"},{"volume-title":"Proceedings of the 23rd International Conference on Machine Learning. 1073--1080","author":"Ye J.","key":"e_1_2_2_53_1"},{"key":"e_1_2_2_54_1","doi-asserted-by":"crossref","unstructured":"K. Yu X. Wu W. Ding and J. Pei. 2016. Scalable and accurate online feature selection for big data. ACM Transactions on Knowledge Discovery from Data 11 2 (2016) 1--39. K. Yu X. Wu W. Ding and J. Pei. 2016. Scalable and accurate online feature selection for big data. ACM Transactions on Knowledge Discovery from Data 11 2 (2016) 1--39.","DOI":"10.1145\/2976744"},{"volume-title":"Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. 4279--4287","author":"Zhang C.","key":"e_1_2_2_55_1"},{"key":"e_1_2_2_56_1","doi-asserted-by":"publisher","DOI":"10.1109\/TCYB.2018.2811764"},{"volume-title":"Proceedings of the 10th European Conference on Computer Vision: Part I. 725--738","author":"Zhang T.","key":"e_1_2_2_57_1"},{"key":"e_1_2_2_58_1","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2019.2904701"},{"volume-title":"Proceedings of the International Joint Conference on Artifical Intelligence. 4440--4446","author":"Zhou L.","key":"e_1_2_2_59_1"},{"key":"e_1_2_2_60_1","doi-asserted-by":"publisher","DOI":"10.1109\/TCYB.2016.2529299"},{"key":"e_1_2_2_61_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.sigpro.2017.11.018"}],"container-title":["ACM Transactions on Knowledge Discovery from Data"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3409478","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T12:13:10Z","timestamp":1672575190000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3409478"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,9,28]]},"references-count":61,"journal-issue":{"issue":"6","published-print":{"date-parts":[[2020,12,31]]}},"alternative-id":["10.1145\/3409478"],"URL":"https:\/\/doi.org\/10.1145\/3409478","relation":{},"ISSN":["1556-4681","1556-472X"],"issn-type":[{"type":"print","value":"1556-4681"},{"type":"electronic","value":"1556-472X"}],"subject":[],"published":{"date-parts":[[2020,9,28]]},"assertion":[{"value":"2019-11-01","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2020-06-01","order":1,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2020-09-28","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}