{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,23]],"date-time":"2024-10-23T04:34:44Z","timestamp":1729658084296,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":39,"publisher":"ACM","funder":[{"name":"National Natural Science Foundation of China","award":["61872267, 61902277"]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2020,10,12]]},"DOI":"10.1145\/3394171.3413987","type":"proceedings-article","created":{"date-parts":[[2020,10,12]],"date-time":"2020-10-12T13:10:44Z","timestamp":1602508244000},"page":"3395-3403","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":6,"title":["Multi-graph Convolutional Network for Unsupervised 3D Shape Retrieval"],"prefix":"10.1145","author":[{"given":"Weizhi","family":"Nie","sequence":"first","affiliation":[{"name":"Tianjin University, Tianjin, China"}]},{"given":"Yue","family":"Zhao","sequence":"additional","affiliation":[{"name":"Tianjin University, Tianjin, China"}]},{"given":"An-An","family":"Liu","sequence":"additional","affiliation":[{"name":"Tianjin University, Tianjin, China"}]},{"given":"Zan","family":"Gao","sequence":"additional","affiliation":[{"name":"Shandong Artificial Intelligence Institute, Jinan, China"}]},{"given":"Yuting","family":"Su","sequence":"additional","affiliation":[{"name":"Tianjin University, Tianjin, China"}]}],"member":"320","published-online":{"date-parts":[[2020,10,12]]},"reference":[{"key":"e_1_3_2_2_1_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.543"},{"key":"e_1_3_2_2_2_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.90"},{"key":"e_1_3_2_2_3_1","unstructured":"Davide Boscaini Jonathan Masci Emanuele Rodol\u00e0 and Michael Bronstein. 2016. Learning shape correspondence with anisotropic convolutional neural networks. In Advances in Neural Information Processing Systems. 3189--3197. Davide Boscaini Jonathan Masci Emanuele Rodol\u00e0 and Michael Bronstein. 2016. Learning shape correspondence with anisotropic convolutional neural networks. In Advances in Neural Information Processing Systems. 3189--3197."},{"volume-title":"Computer graphics forum","author":"Chen Ding-Yun","key":"e_1_3_2_2_4_1","unstructured":"Ding-Yun Chen , Xiao-Pei Tian , Yu-Te Shen , and Ming Ouhyoung . 2003. On visual similarity based 3D model retrieval . In Computer graphics forum , Vol. 22 . Wiley Online Library , 223--232. Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming Ouhyoung. 2003. On visual similarity based 3D model retrieval. In Computer graphics forum, Vol. 22. Wiley Online Library, 223--232."},{"key":"e_1_3_2_2_5_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00035"},{"key":"e_1_3_2_2_6_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.future.2018.12.039"},{"key":"e_1_3_2_2_7_1","volume-title":"Multiple discrimination and pairwise CNN for view-based 3D object retrieval. Neural Networks","author":"Gao Zan","year":"2020","unstructured":"Zan Gao , Haixin Xue , and Shaohua Wan . 2020. Multiple discrimination and pairwise CNN for view-based 3D object retrieval. Neural Networks ( 2020 ). Zan Gao, Haixin Xue, and Shaohua Wan. 2020. Multiple discrimination and pairwise CNN for view-based 3D object retrieval. Neural Networks (2020)."},{"key":"e_1_3_2_2_8_1","doi-asserted-by":"publisher","DOI":"10.1145\/2939672.2939754"},{"key":"e_1_3_2_2_9_1","volume-title":"Unsupervised learning of 3-D local features from raw voxels based on a novel permutation voxelization strategy","author":"Han Zhizhong","year":"2017","unstructured":"Zhizhong Han , Zhenbao Liu , Junwei Han , Chi-Man Vong , Shuhui Bu , and CL Philip Chen . 2017. Unsupervised learning of 3-D local features from raw voxels based on a novel permutation voxelization strategy . IEEE transactions on cybernetics, Vol. 49 , 2 ( 2017 ), 481--494. Zhizhong Han, Zhenbao Liu, Junwei Han, Chi-Man Vong, Shuhui Bu, and CL Philip Chen. 2017. Unsupervised learning of 3-D local features from raw voxels based on a novel permutation voxelization strategy. IEEE transactions on cybernetics, Vol. 49, 2 (2017), 481--494."},{"key":"e_1_3_2_2_10_1","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2016.2605920"},{"key":"e_1_3_2_2_11_1","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v33i01.33018376"},{"key":"e_1_3_2_2_12_1","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2018.2868426"},{"key":"e_1_3_2_2_13_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"e_1_3_2_2_14_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00208"},{"key":"e_1_3_2_2_15_1","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v33i01.33018513"},{"key":"e_1_3_2_2_16_1","volume-title":"Symposium on geometry processing","volume":"6","author":"Kazhdan Michael","year":"2003","unstructured":"Michael Kazhdan , Thomas Funkhouser , and Szymon Rusinkiewicz . 2003 . Rotation invariant spherical harmonic representation of 3 d shape descriptors . In Symposium on geometry processing , Vol. 6 . 156--164. Michael Kazhdan, Thomas Funkhouser, and Szymon Rusinkiewicz. 2003. Rotation invariant spherical harmonic representation of 3 d shape descriptors. In Symposium on geometry processing, Vol. 6. 156--164."},{"key":"e_1_3_2_2_17_1","volume-title":"Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907","author":"Kipf Thomas N","year":"2016","unstructured":"Thomas N Kipf and Max Welling . 2016. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 ( 2016 ). Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)."},{"key":"e_1_3_2_2_18_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.99"},{"key":"e_1_3_2_2_19_1","volume-title":"International Joint Conference on Computer Vision, Imaging and Computer Graphics. Springer, 25--47","author":"Lin Jun-Yang","year":"2018","unstructured":"Jun-Yang Lin , May-Fang She , Ming-Han Tsai , I- Chen Lin , Yo-Chung Lau , and Hsu-Hang Liu . 2018 . 3D articulated model retrieval using depth image input . In International Joint Conference on Computer Vision, Imaging and Computer Graphics. Springer, 25--47 . Jun-Yang Lin, May-Fang She, Ming-Han Tsai, I-Chen Lin, Yo-Chung Lau, and Hsu-Hang Liu. 2018. 3D articulated model retrieval using depth image input. In International Joint Conference on Computer Vision, Imaging and Computer Graphics. Springer, 25--47."},{"key":"e_1_3_2_2_20_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00910"},{"key":"e_1_3_2_2_21_1","doi-asserted-by":"publisher","DOI":"10.1145\/3159652.3159680"},{"key":"e_1_3_2_2_22_1","volume-title":"Learning Cross-Domain Representation with Multi-Graph Neural Network. arXiv preprint arXiv:1905.10095","author":"Ouyang Yi","year":"2019","unstructured":"Yi Ouyang , Bin Guo , Xing Tang , Xiuqiang He , Jian Xiong , and Zhiwen Yu. 2019. Learning Cross-Domain Representation with Multi-Graph Neural Network. arXiv preprint arXiv:1905.10095 ( 2019 ). Yi Ouyang, Bin Guo, Xing Tang, Xiuqiang He, Jian Xiong, and Zhiwen Yu. 2019. Learning Cross-Domain Representation with Multi-Graph Neural Network. arXiv preprint arXiv:1905.10095 (2019)."},{"key":"e_1_3_2_2_23_1","unstructured":"Adam Paszke Sam Gross Soumith Chintala Gregory Chanan Edward Yang Zachary DeVito Zeming Lin Alban Desmaison Luca Antiga and Adam Lerer. 2017. Automatic differentiation in pytorch. (2017). Adam Paszke Sam Gross Soumith Chintala Gregory Chanan Edward Yang Zachary DeVito Zeming Lin Alban Desmaison Luca Antiga and Adam Lerer. 2017. Automatic differentiation in pytorch. (2017)."},{"key":"e_1_3_2_2_24_1","doi-asserted-by":"publisher","DOI":"10.1145\/2623330.2623732"},{"key":"e_1_3_2_2_25_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICDM.2017.134"},{"key":"e_1_3_2_2_26_1","volume-title":"Orientation-boosted voxel nets for 3d object recognition. arXiv preprint arXiv:1604.03351","author":"Sedaghat Nima","year":"2016","unstructured":"Nima Sedaghat , Mohammadreza Zolfaghari , Ehsan Amiri , and Thomas Brox . 2016. Orientation-boosted voxel nets for 3d object recognition. arXiv preprint arXiv:1604.03351 ( 2016 ). Nima Sedaghat, Mohammadreza Zolfaghari, Ehsan Amiri, and Thomas Brox. 2016. Orientation-boosted voxel nets for 3d object recognition. arXiv preprint arXiv:1604.03351 (2016)."},{"key":"e_1_3_2_2_27_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.cag.2017.12.001"},{"key":"e_1_3_2_2_28_1","volume-title":"Exploiting the PANORAMA Representation for Convolutional Neural Network Classification and Retrieval. 3DOR","author":"Sfikas Konstantinos","year":"2017","unstructured":"Konstantinos Sfikas , Theoharis Theoharis , and Ioannis Pratikakis . 2017. Exploiting the PANORAMA Representation for Convolutional Neural Network Classification and Retrieval. 3DOR , Vol. 6 ( 2017 ), 7. Konstantinos Sfikas, Theoharis Theoharis, and Ioannis Pratikakis. 2017. Exploiting the PANORAMA Representation for Convolutional Neural Network Classification and Retrieval. 3DOR, Vol. 6 (2017), 7."},{"key":"e_1_3_2_2_29_1","article-title":"Weisfeiler-lehman graph kernels","volume":"12","author":"Shervashidze Nino","year":"2011","unstructured":"Nino Shervashidze , Pascal Schweitzer , Erik Jan Van Leeuwen , Kurt Mehlhorn , and Karsten M Borgwardt . 2011 . Weisfeiler-lehman graph kernels . Journal of Machine Learning Research , Vol. 12 , 9 (2011). Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M Borgwardt. 2011. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, Vol. 12, 9 (2011).","journal-title":"Journal of Machine Learning Research"},{"key":"e_1_3_2_2_30_1","doi-asserted-by":"publisher","DOI":"10.1109\/LSP.2015.2480802"},{"key":"e_1_3_2_2_31_1","volume-title":"Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556","author":"Simonyan Karen","year":"2014","unstructured":"Karen Simonyan and Andrew Zisserman . 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 ( 2014 ). Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)."},{"key":"e_1_3_2_2_32_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.114"},{"key":"e_1_3_2_2_33_1","doi-asserted-by":"crossref","unstructured":"Yuting Su Wenhui Li Anan Liu and Weizhi Nie. 2018. Hierarchical Graph Structure Learning for Multi-View 3D Model Retrieval.. In IJCAI. 913--919. Yuting Su Wenhui Li Anan Liu and Weizhi Nie. 2018. Hierarchical Graph Structure Learning for Multi-View 3D Model Retrieval.. In IJCAI. 913--919.","DOI":"10.24963\/ijcai.2018\/127"},{"key":"e_1_3_2_2_34_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"e_1_3_2_2_35_1","doi-asserted-by":"publisher","DOI":"10.1145\/2736277.2741093"},{"key":"e_1_3_2_2_36_1","doi-asserted-by":"publisher","DOI":"10.1145\/2939672.2939753"},{"key":"e_1_3_2_2_37_1","volume-title":"Proceedings of the IEEE conference on computer vision and pattern recognition. 1912--1920","author":"Wu Zhirong","year":"2015","unstructured":"Zhirong Wu , Shuran Song , Aditya Khosla , Fisher Yu , Linguang Zhang , Xiaoou Tang , and Jianxiong Xiao . 2015 . 3d shapenets: A deep representation for volumetric shapes . In Proceedings of the IEEE conference on computer vision and pattern recognition. 1912--1920 . Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong Xiao. 2015. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE conference on computer vision and pattern recognition. 1912--1920."},{"key":"e_1_3_2_2_38_1","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2017.2651408"},{"key":"e_1_3_2_2_39_1","doi-asserted-by":"publisher","DOI":"10.1145\/3240508.3240702"}],"event":{"name":"MM '20: The 28th ACM International Conference on Multimedia","sponsor":["SIGMM ACM Special Interest Group on Multimedia"],"location":"Seattle WA USA","acronym":"MM '20"},"container-title":["Proceedings of the 28th ACM International Conference on Multimedia"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3394171.3413987","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,15]],"date-time":"2024-08-15T20:39:55Z","timestamp":1723754395000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3394171.3413987"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,10,12]]},"references-count":39,"alternative-id":["10.1145\/3394171.3413987","10.1145\/3394171"],"URL":"https:\/\/doi.org\/10.1145\/3394171.3413987","relation":{},"subject":[],"published":{"date-parts":[[2020,10,12]]},"assertion":[{"value":"2020-10-12","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}