{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,8]],"date-time":"2024-09-08T00:46:40Z","timestamp":1725756400471},"publisher-location":"New York, NY, USA","reference-count":19,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2020,10,12]]},"DOI":"10.1145\/3394171.3413536","type":"proceedings-article","created":{"date-parts":[[2020,10,12]],"date-time":"2020-10-12T13:10:18Z","timestamp":1602508218000},"page":"358-366","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":22,"title":["Efficient Adaptation of Neural Network Filter for Video Compression"],"prefix":"10.1145","author":[{"given":"Yat-Hong","family":"Lam","sequence":"first","affiliation":[{"name":"Nokia Technologies, Tampere, Finland"}]},{"given":"Alireza","family":"Zare","sequence":"additional","affiliation":[{"name":"Nokia Technologies, Tampere, Finland"}]},{"given":"Francesco","family":"Cricri","sequence":"additional","affiliation":[{"name":"Nokia Technologies, Tampere, Finland"}]},{"given":"Jani","family":"Lainema","sequence":"additional","affiliation":[{"name":"Nokia Technologies, Tampere, Finland"}]},{"given":"Miska M.","family":"Hannuksela","sequence":"additional","affiliation":[{"name":"Nokia Technologies, Tampere, Finland"}]}],"member":"320","published-online":{"date-parts":[[2020,10,12]]},"reference":[{"volume-title":"Workshop and Challenge on Learned Image Compression. http:\/\/www.compression.cc\/2020\/","year":"2020","author":"CLIC","key":"e_1_3_2_2_1_1"},{"key":"e_1_3_2_2_2_1","unstructured":"Gisle Bjontegaard. 2001. Calculation of average PSNR differences between RD-curves. VCEG-M33 (2001). Gisle Bjontegaard. 2001. Calculation of average PSNR differences between RD-curves. VCEG-M33 (2001)."},{"volume-title":"CAS-CNN: A Deep Convolutional Neural Network for Image Compression Artifact Suppression. In International Joint Conference on Neural Networks (IJCNN).","year":"2017","author":"Cavigelli Lukas","key":"e_1_3_2_2_3_1"},{"volume-title":"Suk Chong, Chih-Ming Fu, Takayuki Itoh, Takashi Watanabe, Takeshi Chujoh, Marta Karczewicz, et almbox.","year":"2012","author":"Chen Ching-Yeh","key":"e_1_3_2_2_4_1"},{"key":"e_1_3_2_2_5_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.73"},{"key":"e_1_3_2_2_6_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.351"},{"key":"e_1_3_2_2_7_1","unstructured":"S. Kim J. Chen Y. Ye. 2019. Algorithm description for Versatile Video Coding and Test Model 7 (VTM 7). JVET-P1002 (2019). S. Kim J. Chen Y. Ye. 2019. Algorithm description for Versatile Video Coding and Test Model 7 (VTM 7). JVET-P1002 (2019)."},{"key":"e_1_3_2_2_8_1","doi-asserted-by":"crossref","unstructured":"C. Jia S. Wang X. Zhang S. Wang J. Liu S. Pu and S. Ma. 2019. Content-Aware Convolutional Neural Network for In-loop Filtering in High Efficiency Video Coding. IEEE Transactions on Image Processing (2019) 1--1. https:\/\/doi.org\/10.1109\/TIP.2019.2896489 C. Jia S. Wang X. Zhang S. Wang J. Liu S. Pu and S. Ma. 2019. Content-Aware Convolutional Neural Network for In-loop Filtering in High Efficiency Video Coding. IEEE Transactions on Image Processing (2019) 1--1. https:\/\/doi.org\/10.1109\/TIP.2019.2896489","DOI":"10.1109\/TIP.2019.2896489"},{"volume-title":"Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980","year":"2014","author":"Kingma Diederik P","key":"e_1_3_2_2_9_1"},{"key":"e_1_3_2_2_10_1","unstructured":"Yat Hong Lam Alireza Zare Caglar Aytekin Francesco Cricri Jani Lainema Emre Aksu Miska Hannuksela and Hatanpaan Valtatie. [n.d.]. Compressing Weight-updates for Image Artifacts Removal Neural Networks. ([n. d.]). Yat Hong Lam Alireza Zare Caglar Aytekin Francesco Cricri Jani Lainema Emre Aksu Miska Hannuksela and Hatanpaan Valtatie. [n.d.]. Compressing Weight-updates for Image Artifacts Removal Neural Networks. ([n. d.])."},{"key":"e_1_3_2_2_11_1","unstructured":"Gary Sullivan; Jens-Rainer Ohm. 2012. Software Reference Configurations JCTVC-I1100. Technical Report. ISO\/IEC-JCT1\/SC29\/WG11 Geneva Switzerland. Gary Sullivan; Jens-Rainer Ohm. 2012. Software Reference Configurations JCTVC-I1100. Technical Report. ISO\/IEC-JCT1\/SC29\/WG11 Geneva Switzerland."},{"key":"e_1_3_2_2_12_1","unstructured":"Woon-Sung Park and Munchurl Kim. 2016. CNN-based in-loop filtering for coding efficiency improvement. In 2016 IEEE 12th Image Video and Multidimensional Signal Processing Workshop (IVMSP). IEEE 1--5. Woon-Sung Park and Munchurl Kim. 2016. CNN-based in-loop filtering for coding efficiency improvement. In 2016 IEEE 12th Image Video and Multidimensional Signal Processing Workshop (IVMSP). IEEE 1--5."},{"key":"e_1_3_2_2_13_1","unstructured":"Igor Pavlov. 2019 a. 7z format. http:\/\/www.7-zip.org\/7z.html Igor Pavlov. 2019 a. 7z format. http:\/\/www.7-zip.org\/7z.html"},{"key":"e_1_3_2_2_14_1","unstructured":"Igor Pavlov. 2019 b. LZMA SDK (Software Development Kit). https:\/\/www.7-zip.org\/sdk.html Igor Pavlov. 2019 b. LZMA SDK (Software Development Kit). https:\/\/www.7-zip.org\/sdk.html"},{"volume-title":"Fine-pruning: Joint fine-tuning and compression of a convolutional network with Bayesian optimization. arXiv preprint arXiv:1707.09102","year":"2017","author":"Tung Frederick","key":"e_1_3_2_2_15_1"},{"key":"e_1_3_2_2_16_1","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2944473"},{"key":"e_1_3_2_2_17_1","unstructured":"Hujun Yin; Rongzhen Yang; Xiaoran Fang; Zheng Gao; Ruiqi Yang. 2019. Multiple Convolution Neural Networks For Sequence-Independent Processing. JVET-P0489 (2019). Hujun Yin; Rongzhen Yang; Xiaoran Fang; Zheng Gao; Ruiqi Yang. 2019. Multiple Convolution Neural Networks For Sequence-Independent Processing. JVET-P0489 (2019)."},{"key":"e_1_3_2_2_18_1","unstructured":"Ke Yu Chao Dong Chen Change Loy and Xiaoou Tang. 2016. Deep convolution networks for compression artifacts reduction. arXiv preprint arXiv:1608.02778 (2016). Ke Yu Chao Dong Chen Change Loy and Xiaoou Tang. 2016. Deep convolution networks for compression artifacts reduction. arXiv preprint arXiv:1608.02778 (2016)."},{"key":"e_1_3_2_2_19_1","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2018.2815841"}],"event":{"name":"MM '20: The 28th ACM International Conference on Multimedia","sponsor":["SIGMM ACM Special Interest Group on Multimedia"],"location":"Seattle WA USA","acronym":"MM '20"},"container-title":["Proceedings of the 28th ACM International Conference on Multimedia"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3394171.3413536","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,5]],"date-time":"2023-01-05T19:51:29Z","timestamp":1672948289000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3394171.3413536"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,10,12]]},"references-count":19,"alternative-id":["10.1145\/3394171.3413536","10.1145\/3394171"],"URL":"https:\/\/doi.org\/10.1145\/3394171.3413536","relation":{},"subject":[],"published":{"date-parts":[[2020,10,12]]},"assertion":[{"value":"2020-10-12","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}