{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T21:03:38Z","timestamp":1730322218853,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":15,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2019,9,25]]},"DOI":"10.1145\/3386164.3389084","type":"proceedings-article","created":{"date-parts":[[2020,6,7]],"date-time":"2020-06-07T01:30:15Z","timestamp":1591493415000},"page":"1-5","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":0,"title":["Localization of Myocardial Infarction from 12 Lead ECG Empowered with Novel Machine Learning"],"prefix":"10.1145","author":[{"given":"Mazen","family":"Megahed","sequence":"first","affiliation":[{"name":"HEARTio (Heart Input Output, Inc.), a Delaware C-Corp, Heartio.ai, USA"}]},{"given":"Utkars","family":"Jain","sequence":"additional","affiliation":[{"name":"HEARTio (Heart Input Output, Inc.), a Delaware C-Corp, USA"}]},{"given":"Michael","family":"Leasure","sequence":"additional","affiliation":[{"name":"HEARTio (Heart Input Output, Inc.), a Delaware C-Corp, USA"}]},{"given":"Adam","family":"Butchy","sequence":"additional","affiliation":[{"name":"HEARTio (Heart Input Output, Inc.), a Delaware C Corp, USA"}]}],"member":"320","published-online":{"date-parts":[[2020,6,6]]},"reference":[{"key":"e_1_3_2_1_1_1","doi-asserted-by":"publisher","DOI":"10.1161\/01.CIR.101.23.e215"},{"key":"e_1_3_2_1_2_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.compbiomed.2014.08.010"},{"key":"e_1_3_2_1_3_1","unstructured":"Bob McGraw Jason Lord Matthew Westendorp Lisa Evans and Jordan Chenkin. Normalecg. Bob McGraw Jason Lord Matthew Westendorp Lisa Evans and Jordan Chenkin. Normalecg."},{"key":"e_1_3_2_1_4_1","unstructured":"Christine L. Tsien Hamish S. F. Fraser William J. Long and R. Lee Kennedy. Using classification tree and logistic regression methods to diagnose myocardial infarction. Studies in health technology and informatics 52 Pt 1:493--7 1998. Christine L. Tsien Hamish S. F. Fraser William J. Long and R. Lee Kennedy. Using classification tree and logistic regression methods to diagnose myocardial infarction. Studies in health technology and informatics 52 Pt 1:493--7 1998."},{"key":"e_1_3_2_1_5_1","doi-asserted-by":"publisher","DOI":"10.1056\/NEJMoa1208200"},{"key":"e_1_3_2_1_6_1","doi-asserted-by":"publisher","DOI":"10.1016\/S0002-8703(00)90246-1"},{"key":"e_1_3_2_1_7_1","doi-asserted-by":"crossref","unstructured":"Emelia J. Benjamin et al. Heart disease and stroke statistics 2017 update: A report from the american heart association. Circulation 135(10) mar 2017. Emelia J. Benjamin et al. Heart disease and stroke statistics 2017 update: A report from the american heart association. Circulation 135(10) mar 2017.","DOI":"10.1161\/CIR.0000000000000491"},{"key":"e_1_3_2_1_8_1","unstructured":"Euan Ashley and Josef Niebauer. Cardiology Explained (Remedica Explained). Remedica Publishing 2003. Euan Ashley and Josef Niebauer. Cardiology Explained (Remedica Explained). Remedica Publishing 2003."},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.1109\/TBME.2012.2213597"},{"key":"e_1_3_2_1_10_1","doi-asserted-by":"publisher","DOI":"10.1016\/S0933-3657(98)00063-3"},{"key":"e_1_3_2_1_11_1","doi-asserted-by":"publisher","DOI":"10.3390\/e19090488"},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10916-010-9474-3"},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"publisher","DOI":"10.4236\/jbise.2014.710081"},{"key":"e_1_3_2_1_14_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.protcy.2016.05.195"},{"key":"e_1_3_2_1_15_1","first-page":"866","article-title":"Analysis of ecg signal by chaos principle to help automatic diagnosis of myocardial infarction","volume":"68","author":"Lahiri Tapobrata","year":"2009","journal-title":"Journal of Scientific & Industrial Research"}],"event":{"name":"ISCSIC 2019: 2019 3rd International Symposium on Computer Science and Intelligent Control","acronym":"ISCSIC 2019","location":"Amsterdam Netherlands"},"container-title":["Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3386164.3389084","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,14]],"date-time":"2023-01-14T23:36:24Z","timestamp":1673739384000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3386164.3389084"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,9,25]]},"references-count":15,"alternative-id":["10.1145\/3386164.3389084","10.1145\/3386164"],"URL":"https:\/\/doi.org\/10.1145\/3386164.3389084","relation":{},"subject":[],"published":{"date-parts":[[2019,9,25]]},"assertion":[{"value":"2020-06-06","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}