{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,8]],"date-time":"2024-09-08T10:33:41Z","timestamp":1725791621947},"publisher-location":"New York, NY, USA","reference-count":37,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2020,9,12]]},"DOI":"10.1145\/3385955.3407935","type":"proceedings-article","created":{"date-parts":[[2020,8,23]],"date-time":"2020-08-23T22:15:01Z","timestamp":1598220901000},"page":"1-9","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":11,"title":["RIT-Eyes: Rendering of near-eye images for eye-tracking applications"],"prefix":"10.1145","author":[{"given":"Nitinraj","family":"Nair","sequence":"first","affiliation":[{"name":"Rochester Institute of Technology, USA"}]},{"given":"Rakshit","family":"Kothari","sequence":"additional","affiliation":[{"name":"Rochester Institute of Technology, USA"}]},{"given":"Aayush K.","family":"Chaudhary","sequence":"additional","affiliation":[{"name":"Rochester Institute of Technology, USA"}]},{"given":"Zhizhuo","family":"Yang","sequence":"additional","affiliation":[{"name":"Rochester Institute of Technology, USA"}]},{"given":"Gabriel J.","family":"Diaz","sequence":"additional","affiliation":[{"name":"Rochester Institute of Technology, USA"}]},{"given":"Jeff B.","family":"Pelz","sequence":"additional","affiliation":[{"name":"Rochester Institute of Technology, USA"}]},{"given":"Reynold J.","family":"Bailey","sequence":"additional","affiliation":[{"name":"Rochester Institute of Technology, USA"}]}],"member":"320","published-online":{"date-parts":[[2020,9,12]]},"reference":[{"key":"e_1_3_2_2_1_1","unstructured":"Ioannis Agtzidis Mikhail Startsev and Michael Dorr. 2019. A Ground-Truth Data Set and a Classification Algorithm for Eye Movements in 360-degree Videos. (2019). http:\/\/arxiv.org\/abs\/1903.06474 Ioannis Agtzidis Mikhail Startsev and Michael Dorr. 2019. A Ground-Truth Data Set and a Classification Algorithm for Eye Movements in 360-degree Videos. (2019). http:\/\/arxiv.org\/abs\/1903.06474"},{"key":"#cr-split#-e_1_3_2_2_2_1.1","doi-asserted-by":"crossref","unstructured":"Mohsan Alvi Andrew Zisserman and Christoffer Nell\u00e5ker. 2019. Turning a blind eye: Explicit removal of biases and variation from deep neural network embeddings. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 11129 LNCS (2019) 556-572. https:\/\/doi.org\/10.1007\/978-3-030-11009-3_34 10.1007\/978-3-030-11009-3_34","DOI":"10.1007\/978-3-030-11009-3_34"},{"key":"#cr-split#-e_1_3_2_2_2_1.2","doi-asserted-by":"crossref","unstructured":"Mohsan Alvi Andrew Zisserman and Christoffer Nell\u00e5ker. 2019. Turning a blind eye: Explicit removal of biases and variation from deep neural network embeddings. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 11129 LNCS (2019) 556-572. https:\/\/doi.org\/10.1007\/978-3-030-11009-3_34","DOI":"10.1007\/978-3-030-11009-3_34"},{"key":"e_1_3_2_2_3_1","doi-asserted-by":"publisher","DOI":"10.1111\/cxo.12352"},{"key":"e_1_3_2_2_4_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2016.2644615"},{"key":"e_1_3_2_2_5_1","doi-asserted-by":"publisher","DOI":"10.1145\/2897824.2925962"},{"volume-title":"Computer Graphics Forum, Vol.\u00a038","author":"B\u00e9rard Pascal","key":"e_1_3_2_2_6_1","unstructured":"Pascal B\u00e9rard , Derek Bradley , Markus Gross , and Thabo Beeler . 2019. Practical Person-Specific Eye Rigging . In Computer Graphics Forum, Vol.\u00a038 . Wiley Online Library , 441\u2013454. Pascal B\u00e9rard, Derek Bradley, Markus Gross, and Thabo Beeler. 2019. Practical Person-Specific Eye Rigging. In Computer Graphics Forum, Vol.\u00a038. Wiley Online Library, 441\u2013454."},{"key":"e_1_3_2_2_7_1","doi-asserted-by":"publisher","DOI":"10.1145\/2661229.2661285"},{"key":"e_1_3_2_2_8_1","doi-asserted-by":"publisher","DOI":"10.1145\/1344471.1344529"},{"key":"e_1_3_2_2_9_1","doi-asserted-by":"crossref","unstructured":"Aayush\u00a0K. Chaudhary Rakshit Kothari Manoj Acharya Shusil Dangi Nitinraj Nair Reynold Bailey Christopher Kanan Gabriel Diaz and Jeff\u00a0B. Pelz. 2019. RITnet: Real-time Semantic Segmentation of the Eye for Gaze Tracking. (2019) 1\u20135. http:\/\/arxiv.org\/abs\/1910.00694 Aayush\u00a0K. Chaudhary Rakshit Kothari Manoj Acharya Shusil Dangi Nitinraj Nair Reynold Bailey Christopher Kanan Gabriel Diaz and Jeff\u00a0B. Pelz. 2019. RITnet: Real-time Semantic Segmentation of the Eye for Gaze Tracking. (2019) 1\u20135. http:\/\/arxiv.org\/abs\/1910.00694","DOI":"10.1109\/ICCVW.2019.00568"},{"key":"e_1_3_2_2_10_1","volume-title":"How Iris Recognition Works. The Essential Guide to Image Processing 14, 1","author":"Daugman John","year":"2009","unstructured":"John Daugman . 2009. How Iris Recognition Works. The Essential Guide to Image Processing 14, 1 ( 2009 ), 715\u2013739. https:\/\/doi.org\/10.1016\/B978-0-12-374457-9.00025-1 10.1016\/B978-0-12-374457-9.00025-1 John Daugman. 2009. How Iris Recognition Works. The Essential Guide to Image Processing 14, 1 (2009), 715\u2013739. https:\/\/doi.org\/10.1016\/B978-0-12-374457-9.00025-1"},{"key":"e_1_3_2_2_11_1","doi-asserted-by":"publisher","DOI":"10.1145\/3204493.3204525"},{"key":"e_1_3_2_2_12_1","volume-title":"Parameters to Optimize the Design of Biosynthetic Corneal Substitutes. Investigative Opthalmology & Visual Science 56, 8 (7","author":"Durr M.","year":"2015","unstructured":"Georges\u00a0 M. Durr , Edouard Auvinet , Jeb Ong , Jean Meunier , and Isabelle Brunette . 2015. Corneal Shape , Volume, and Interocular Symmetry : Parameters to Optimize the Design of Biosynthetic Corneal Substitutes. Investigative Opthalmology & Visual Science 56, 8 (7 2015 ), 4275. https:\/\/doi.org\/10.1167\/iovs.15-16710 10.1167\/iovs.15-16710 Georges\u00a0M. Durr, Edouard Auvinet, Jeb Ong, Jean Meunier, and Isabelle Brunette. 2015. Corneal Shape, Volume, and Interocular Symmetry: Parameters to Optimize the Design of Biosynthetic Corneal Substitutes. Investigative Opthalmology & Visual Science 56, 8 (7 2015), 4275. https:\/\/doi.org\/10.1167\/iovs.15-16710"},{"key":"e_1_3_2_2_13_1","doi-asserted-by":"publisher","DOI":"10.1145\/3314111.3319914"},{"key":"e_1_3_2_2_14_1","volume-title":"PupilNet v2.0: Convolutional Neural Networks for CPU based real time Robust Pupil Detection. (10","author":"Fuhl Wolfgang","year":"2017","unstructured":"Wolfgang Fuhl , Thiago Santini , Gjergji Kasneci , Wolfgang Rosenstiel , and Enkelejda Kasneci . 2017. PupilNet v2.0: Convolutional Neural Networks for CPU based real time Robust Pupil Detection. (10 2017 ). http:\/\/arxiv.org\/abs\/1711.00112 Wolfgang Fuhl, Thiago Santini, Gjergji Kasneci, Wolfgang Rosenstiel, and Enkelejda Kasneci. 2017. PupilNet v2.0: Convolutional Neural Networks for CPU based real time Robust Pupil Detection. (10 2017). http:\/\/arxiv.org\/abs\/1711.00112"},{"key":"e_1_3_2_2_15_1","volume-title":"OpenEDS: Open Eye Dataset. (4","author":"Garbin J.","year":"2019","unstructured":"Stephan\u00a0 J. Garbin , Yiru Shen , Immo Schuetz , Robert Cavin , Gregory Hughes , and Sachin\u00a0 S. Talathi . 2019. OpenEDS: Open Eye Dataset. (4 2019 ). http:\/\/arxiv.org\/abs\/1905.03702 Stephan\u00a0J. Garbin, Yiru Shen, Immo Schuetz, Robert Cavin, Gregory Hughes, and Sachin\u00a0S. Talathi. 2019. OpenEDS: Open Eye Dataset. (4 2019). http:\/\/arxiv.org\/abs\/1905.03702"},{"key":"e_1_3_2_2_16_1","doi-asserted-by":"publisher","DOI":"10.1145\/2638728.2641695"},{"key":"e_1_3_2_2_17_1","unstructured":"Hoel Kervadec Jihene Bouchtiba Christian Desrosiers \u00c9ric Granger Jose Dolz and Ismail\u00a0Ben Ayed. 2018. Boundary loss for highly unbalanced segmentation. http:\/\/arxiv.org\/abs\/1812.07032 Hoel Kervadec Jihene Bouchtiba Christian Desrosiers \u00c9ric Granger Jose Dolz and Ismail\u00a0Ben Ayed. 2018. Boundary loss for highly unbalanced segmentation. http:\/\/arxiv.org\/abs\/1812.07032"},{"key":"e_1_3_2_2_18_1","doi-asserted-by":"publisher","DOI":"10.1145\/3290605.3300780"},{"key":"e_1_3_2_2_19_1","volume-title":"Adam: A Method for Stochastic Optimization. AIP Conference Proceedings 1631","author":"P.","year":"2014","unstructured":"Diederik\u00a0 P. Kingma and Jimmy Ba. 2014 . Adam: A Method for Stochastic Optimization. AIP Conference Proceedings 1631 , 2 (12 2014 ), 58\u201362. https:\/\/doi.org\/10.1016\/j.jneumeth.2005.04.009 10.1016\/j.jneumeth.2005.04.009 Diederik\u00a0P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization. AIP Conference Proceedings 1631, 2 (12 2014), 58\u201362. https:\/\/doi.org\/10.1016\/j.jneumeth.2005.04.009"},{"key":"e_1_3_2_2_20_1","volume-title":"Gaze-in-wild: A dataset for studying eye and head coordination in everyday activities. Scientific Reports","author":"Kothari Rakshit","year":"2020","unstructured":"Rakshit Kothari , Zhizhuo Yang , Christopher Kanan , Reynold Bailey , Jeff\u00a0 B. Pelz , and Gabriel\u00a0 J. Diaz . 2020 . Gaze-in-wild: A dataset for studying eye and head coordination in everyday activities. Scientific Reports (2020), 1\u201323. https:\/\/doi.org\/10.1038\/s41598-020-59251-5 10.1038\/s41598-020-59251-5 Rakshit Kothari, Zhizhuo Yang, Christopher Kanan, Reynold Bailey, Jeff\u00a0B. Pelz, and Gabriel\u00a0J. Diaz. 2020. Gaze-in-wild: A dataset for studying eye and head coordination in everyday activities. Scientific Reports (2020), 1\u201323. https:\/\/doi.org\/10.1038\/s41598-020-59251-5"},{"key":"e_1_3_2_2_21_1","volume-title":"Learning to Personalize in Appearance-Based Gaze Tracking. (7","author":"Lind\u00e9n Erik","year":"2018","unstructured":"Erik Lind\u00e9n , Jonas Sj\u00f6strand , and Alexandre Proutiere . 2018. Learning to Personalize in Appearance-Based Gaze Tracking. (7 2018 ). http:\/\/arxiv.org\/abs\/1807.00664 Erik Lind\u00e9n, Jonas Sj\u00f6strand, and Alexandre Proutiere. 2018. Learning to Personalize in Appearance-Based Gaze Tracking. (7 2018). http:\/\/arxiv.org\/abs\/1807.00664"},{"key":"e_1_3_2_2_22_1","doi-asserted-by":"publisher","DOI":"10.5555\/1061935.1649095"},{"key":"e_1_3_2_2_23_1","series-title":"Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https:\/\/doi.org\/10.1007\/978-3-319-46484-8_29","volume-title":"Stacked hourglass networks for human pose estimation","author":"Newell Alejandro","unstructured":"Alejandro Newell , Kaiyu Yang , and Jia Deng . 2016. Stacked hourglass networks for human pose estimation . In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https:\/\/doi.org\/10.1007\/978-3-319-46484-8_29 10.1007\/978-3-319-46484-8_29 Alejandro Newell, Kaiyu Yang, and Jia Deng. 2016. Stacked hourglass networks for human pose estimation. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https:\/\/doi.org\/10.1007\/978-3-319-46484-8_29"},{"key":"e_1_3_2_2_24_1","doi-asserted-by":"publisher","DOI":"10.1145\/507072.507099"},{"key":"e_1_3_2_2_25_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00946"},{"key":"e_1_3_2_2_26_1","doi-asserted-by":"crossref","unstructured":"Seonwook Park Adrian Spurr and Otmar Hilliges. 2018a. Deep Pictorial Gaze Estimation. Vol.\u00a011217 LNCS. 741\u2013757. https:\/\/doi.org\/10.1007\/978-3-030-01261-8_44 10.1007\/978-3-030-01261-8_44\nSeonwook Park Adrian Spurr and Otmar Hilliges. 2018a. Deep Pictorial Gaze Estimation. Vol.\u00a011217 LNCS. 741\u2013757. https:\/\/doi.org\/10.1007\/978-3-030-01261-8_44","DOI":"10.1007\/978-3-030-01261-8_44"},{"key":"e_1_3_2_2_27_1","doi-asserted-by":"publisher","DOI":"10.1145\/3204493.3204545"},{"key":"e_1_3_2_2_28_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.241"},{"key":"e_1_3_2_2_29_1","volume-title":"Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations. 10553 LNCS (7","author":"Sudre H.","year":"2017","unstructured":"Carole\u00a0 H. Sudre , Wenqi Li , Tom Vercauteren , S\u00e9bastien Ourselin , and M.\u00a0 Jorge Cardoso . 2017. Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations. 10553 LNCS (7 2017 ), 240\u2013248. https:\/\/doi.org\/10.1007\/978-3-319-67558-9_28 10.1007\/978-3-319-67558-9_28 Carole\u00a0H. Sudre, Wenqi Li, Tom Vercauteren, S\u00e9bastien Ourselin, and M.\u00a0Jorge Cardoso. 2017. Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations. 10553 LNCS (7 2017), 240\u2013248. https:\/\/doi.org\/10.1007\/978-3-319-67558-9_28"},{"key":"e_1_3_2_2_30_1","doi-asserted-by":"publisher","DOI":"10.1145\/2578153.2578188"},{"key":"e_1_3_2_2_31_1","volume-title":"A fully-automatic, temporal approach to single camera, glint-free 3D eye model fitting. Pervasive Eye Tracking and Mobile Eye-Based Interaction (PETMEI)","author":"\u015awirski Lech","year":"2013","unstructured":"Lech \u015awirski and Neil\u00a0 A. Dodgson . 2013. A fully-automatic, temporal approach to single camera, glint-free 3D eye model fitting. Pervasive Eye Tracking and Mobile Eye-Based Interaction (PETMEI) ( 2013 ). Lech \u015awirski and Neil\u00a0A. Dodgson. 2013. A fully-automatic, temporal approach to single camera, glint-free 3D eye model fitting. Pervasive Eye Tracking and Mobile Eye-Based Interaction (PETMEI) (2013)."},{"key":"e_1_3_2_2_32_1","doi-asserted-by":"publisher","DOI":"10.3233\/ICA-180584"},{"key":"e_1_3_2_2_33_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.428"},{"key":"e_1_3_2_2_34_1","doi-asserted-by":"publisher","DOI":"10.1145\/2857491.2857492"},{"key":"e_1_3_2_2_35_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jneumeth.2019.05.016"},{"key":"e_1_3_2_2_36_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7299081"}],"event":{"name":"SAP '20: ACM Symposium on Applied Perception 2020","sponsor":["SIGGRAPH ACM Special Interest Group on Computer Graphics and Interactive Techniques"],"location":"Virtual Event USA","acronym":"SAP '20"},"container-title":["ACM Symposium on Applied Perception 2020"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3385955.3407935","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,10]],"date-time":"2023-01-10T00:50:10Z","timestamp":1673311810000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3385955.3407935"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,9,12]]},"references-count":37,"alternative-id":["10.1145\/3385955.3407935","10.1145\/3385955"],"URL":"https:\/\/doi.org\/10.1145\/3385955.3407935","relation":{},"subject":[],"published":{"date-parts":[[2020,9,12]]},"assertion":[{"value":"2020-09-12","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}