{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,2]],"date-time":"2025-04-02T05:24:21Z","timestamp":1743571461316},"reference-count":49,"publisher":"Association for Computing Machinery (ACM)","issue":"2","funder":[{"name":"Quantum Computing Application Teams program"},{"name":"U.S. Department of Energy Advanced Scientific Computing Research"},{"name":"U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research program office"},{"name":"UT-Battelle LLC","award":["DE-AC05-00OR22725"]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":["J. Emerg. Technol. Comput. Syst."],"published-print":{"date-parts":[[2020,4,30]]},"abstract":"\n Quantum computing (QC) is an emerging computational paradigm that leverages the laws of quantum mechanics to perform elementary logic operations. Existing programming models for QC were designed with fault-tolerant hardware in mind, envisioning stand-alone applications. However, the susceptibility of near-term quantum computers to noise limits their stand-alone utility. To better leverage limited computational strengths of noisy quantum devices, hybrid algorithms have been suggested whereby quantum computers are used in tandem with their classical counterparts in a heterogeneous fashion. This\n modus operandi<\/jats:italic>\n calls out for a programming model and a high-level programming language that natively and seamlessly supports heterogeneous quantum-classical hardware architectures in a single-source-code paradigm. Motivated by the lack of such a model, we introduce a language extension specification, called\n QCOR<\/jats:italic>\n , which enables single-source quantum-classical programming. Programs written using the QCOR library\u2013based language extensions can be compiled to produce functional hybrid binary executables. After defining QCOR\u2019s programming model, memory model, and execution model, we discuss how QCOR enables variational, iterative, and feed-forward QC. QCOR approaches quantum-classical computation in a hardware-agnostic heterogeneous fashion and strives to build on best practices of high-performance computing. The high level of abstraction in the language extension is intended to accelerate the adoption of QC by researchers familiar with classical high-performance computing.\n <\/jats:p>","DOI":"10.1145\/3380964","type":"journal-article","created":{"date-parts":[[2020,3,18]],"date-time":"2020-03-18T12:13:13Z","timestamp":1584533593000},"page":"1-17","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":23,"title":["QCOR"],"prefix":"10.1145","volume":"16","author":[{"given":"Tiffany M.","family":"Mintz","sequence":"first","affiliation":[{"name":"Oak Ridge National Laboratory"}]},{"given":"Alexander J.","family":"McCaskey","sequence":"additional","affiliation":[{"name":"Oak Ridge National Laboratory"}]},{"given":"Eugene F.","family":"Dumitrescu","sequence":"additional","affiliation":[{"name":"Oak Ridge National Laboratory"}]},{"given":"Shirley V.","family":"Moore","sequence":"additional","affiliation":[{"name":"Oak Ridge National Laboratory"}]},{"given":"Sarah","family":"Powers","sequence":"additional","affiliation":[{"name":"Oak Ridge National Laboratory"}]},{"given":"Pavel","family":"Lougovski","sequence":"additional","affiliation":[{"name":"Oak Ridge National Laboratory"}]}],"member":"320","published-online":{"date-parts":[[2020,3,18]]},"reference":[{"key":"e_1_2_1_1_1","unstructured":"GitHub. (n.d.). MPark.Variant. Retrieved February 26 2020 from http:\/\/github.com\/mpark\/variant. GitHub. (n.d.). MPark.Variant. Retrieved February 26 2020 from http:\/\/github.com\/mpark\/variant."},{"key":"e_1_2_1_2_1","volume-title":"New Scientist. Retrieved","author":"Hebden Sophie","year":"2013"},{"key":"e_1_2_1_3_1","volume-title":"Retrieved","year":"2018"},{"key":"e_1_2_1_4_1","volume-title":"Retrieved","year":"2019"},{"key":"e_1_2_1_5_1","unstructured":"Accredited Standards Committee X9 Inc. 2019. Quantum computing risks to the financial services industry. https:\/\/x9.org\/download-qc-ir\/. Accredited Standards Committee X9 Inc. 2019. Quantum computing risks to the financial services industry. https:\/\/x9.org\/download-qc-ir\/."},{"key":"e_1_2_1_6_1","volume-title":"Hybrid quantum-classical approach to correlated materials. Physical Review X 6 3 (Sept","author":"Bauer Bela","year":"2016"},{"key":"e_1_2_1_7_1","doi-asserted-by":"crossref","unstructured":"Marcello Benedetti Delfina Garcia-Pintos Yunseong Nam and Alejandro Perdomo-Ortiz. 2018. A generative modeling approach for benchmarking and training shallow quantum circuits. arXiv:1801.07686. Marcello Benedetti Delfina Garcia-Pintos Yunseong Nam and Alejandro Perdomo-Ortiz. 2018. A generative modeling approach for benchmarking and training shallow quantum circuits. arXiv:1801.07686.","DOI":"10.1038\/s41534-019-0157-8"},{"key":"e_1_2_1_8_1","doi-asserted-by":"crossref","unstructured":"Ajinkya Borle and Josh McCarter. 2019. On post-processing the results of quantum optimizers. arXiv:1905.13107. Ajinkya Borle and Josh McCarter. 2019. On post-processing the results of quantum optimizers. arXiv:1905.13107.","DOI":"10.1007\/978-3-030-34500-6_16"},{"key":"e_1_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.1145\/3007651"},{"key":"e_1_2_1_10_1","first-page":"1","article-title":"Computation of molecular spectra on a quantum processor with an error-resilient algorithm","author":"Colless J. I.","year":"2018","journal-title":"Physical Review"},{"key":"e_1_2_1_11_1","volume-title":"Gambetta","author":"Cross Andrew W.","year":"2017"},{"key":"e_1_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1103\/PhysRevLett.120.210501"},{"key":"e_1_2_1_13_1","unstructured":"Edward Farhi Jeffrey Goldstone and Sam Gutmann. 2014. A quantum approximate optimization algorithm. arXiv:1411.4028. Edward Farhi Jeffrey Goldstone and Sam Gutmann. 2014. A quantum approximate optimization algorithm. arXiv:1411.4028."},{"key":"e_1_2_1_14_1","volume-title":"Design Patterns: Elements of Reusable Object-Oriented Software","author":"Gamma Erich","year":"1995"},{"key":"e_1_2_1_15_1","doi-asserted-by":"publisher","DOI":"10.1017\/S0960129506005378"},{"key":"e_1_2_1_16_1","volume-title":"Retrieved","author":"Gidney Craig","year":"2018"},{"key":"e_1_2_1_17_1","volume-title":"Neil J. Ross, Peter Selinger, and Beno\u00eet Valiron.","author":"Green Alexander S.","year":"2013"},{"key":"e_1_2_1_18_1","unstructured":"Alexander S. Green Peter LeFanu Lumsdaine Neil J. Ross Peter Selinger and Benoit Valiron. 1304. Quipper: A scalable quantum programming language. arXiv:1304.3390. Alexander S. Green Peter LeFanu Lumsdaine Neil J. Ross Peter Selinger and Benoit Valiron. 1304. Quipper: A scalable quantum programming language. arXiv:1304.3390."},{"key":"e_1_2_1_19_1","volume-title":"C (June","author":"JavadiAbhari Ali","year":"2015"},{"key":"e_1_2_1_20_1","volume-title":"Gambetta","author":"Kandala Abhinav","year":"2017"},{"key":"e_1_2_1_21_1","doi-asserted-by":"crossref","unstructured":"Trevor Keen Thomas Maier Steven Johnston and Pavel Lougovski. 2019. Quantum-classical simulation of two-site dynamical mean-field theory on noisy quantum hardware. arXiv:1910.09512. Trevor Keen Thomas Maier Steven Johnston and Pavel Lougovski. 2019. Quantum-classical simulation of two-site dynamical mean-field theory on noisy quantum hardware. arXiv:1910.09512.","DOI":"10.1088\/2058-9565\/ab7d4c"},{"key":"e_1_2_1_22_1","volume-title":"Strawberry fields: A software platform for photonic quantum computing. Quantum 3 (March","author":"Killoran Nathan","year":"2019"},{"key":"e_1_2_1_23_1","doi-asserted-by":"crossref","unstructured":"Ian D. Kivlichan Craig Gidney Dominic W. Berry Nathan Wiebe Jarrod McClean Wei Sun Zhang Jiang etal 2019. Improved fault-tolerant quantum simulation of condensed-phase correlated electrons via trotterization. arXiv:1902.10673. Ian D. Kivlichan Craig Gidney Dominic W. Berry Nathan Wiebe Jarrod McClean Wei Sun Zhang Jiang et al. 2019. Improved fault-tolerant quantum simulation of condensed-phase correlated electrons via trotterization. arXiv:1902.10673.","DOI":"10.22331\/q-2020-07-16-296"},{"key":"e_1_2_1_24_1","doi-asserted-by":"crossref","unstructured":"N. Klco E. F. Dumitrescu A. J. McCaskey T. D. Morris R. C. Pooser M. Sanz E. Solano P. Lougovski and M. J. Savage. 2018. Quantum-classical dynamical calculations of the Schwinger model using quantum computers. arXiv:1803.03326. N. Klco E. F. Dumitrescu A. J. McCaskey T. D. Morris R. C. Pooser M. Sanz E. Solano P. Lougovski and M. J. Savage. 2018. Quantum-classical dynamical calculations of the Schwinger model using quantum computers. arXiv:1803.03326.","DOI":"10.1103\/PhysRevA.98.032331"},{"key":"e_1_2_1_25_1","doi-asserted-by":"publisher","DOI":"10.1038\/nchem.483"},{"key":"e_1_2_1_26_1","volume-title":"Hybrid quantum-classical approach to quantum optimal control. Physical Review Letters 118 15, (April","author":"Li Jun","year":"2017"},{"key":"e_1_2_1_27_1","first-page":"2","article-title":"Efficient variational quantum simulator incorporating active error minimization","author":"Li Ying","year":"2017","journal-title":"Physical Review"},{"key":"e_1_2_1_28_1","volume-title":"Humble","author":"McCaskey Alexander J.","year":"2019"},{"key":"e_1_2_1_29_1","doi-asserted-by":"crossref","unstructured":"Jarrod R. McClean Sergio Boixo Vadim N. Smelyanskiy Ryan Babbush and Hartmut Neven. 2018. Barren plateaus in quantum neural network training landscapes. arXiv:1803.11173. Jarrod R. McClean Sergio Boixo Vadim N. Smelyanskiy Ryan Babbush and Hartmut Neven. 2018. Barren plateaus in quantum neural network training landscapes. arXiv:1803.11173.","DOI":"10.1038\/s41467-018-07090-4"},{"key":"e_1_2_1_30_1","doi-asserted-by":"publisher","DOI":"10.1088\/1367-2630\/18\/2\/023023"},{"key":"e_1_2_1_31_1","unstructured":"Jarrod R. McClean Kevin J. Sung Ian D. Kivlichan Yudong Cao Chengyu Dai E. Schuyler Fried Craig Gidney etal 2017. OpenFermion: The electronic structure package for quantum computers. arXiv:1710.07629. Jarrod R. McClean Kevin J. Sung Ian D. Kivlichan Yudong Cao Chengyu Dai E. Schuyler Fried Craig Gidney et al. 2017. OpenFermion: The electronic structure package for quantum computers. arXiv:1710.07629."},{"key":"e_1_2_1_32_1","unstructured":"David C. McKay Thomas Alexander Luciano Bello Michael J. Biercuk Lev Bishop Jiayin Chen Jerry M. Chow etal 2018. Qiskit backend specifications for OpenQASM and OpenPulse experiments. arxiv:1809.03452. David C. McKay Thomas Alexander Luciano Bello Michael J. Biercuk Lev Bishop Jiayin Chen Jerry M. Chow et al. 2018. Qiskit backend specifications for OpenQASM and OpenPulse experiments. arxiv:1809.03452."},{"key":"e_1_2_1_33_1","doi-asserted-by":"crossref","unstructured":"Nikolaj Moll Panagiotis Barkoutsos Lev S. Bishop Jerry M. Chow Andrew Cross Daniel J. Egger Stefan Filipp etal 2017. Quantum optimization using variational algorithms on near-term quantum devices. arXiv:1710.01022. Nikolaj Moll Panagiotis Barkoutsos Lev S. Bishop Jerry M. Chow Andrew Cross Daniel J. Egger Stefan Filipp et al. 2017. Quantum optimization using variational algorithms on near-term quantum devices. arXiv:1710.01022.","DOI":"10.1088\/2058-9565\/aab822"},{"key":"e_1_2_1_34_1","volume-title":"Chuang","author":"Nielsen Michael A.","year":"2001"},{"key":"e_1_2_1_35_1","first-page":"3","article-title":"Scalable quantum simulation of molecular energies","author":"O\u2019 Malley P. J. J.","year":"2016","journal-title":"Physical Review"},{"key":"e_1_2_1_36_1","volume-title":"Retrieved","author":"Omer Bernhard","year":"1998"},{"key":"e_1_2_1_37_1","doi-asserted-by":"publisher","DOI":"10.1103\/PhysRevA.99.012338"},{"key":"e_1_2_1_38_1","unstructured":"J. S. Otterbach R. Manenti N. Alidoust A. Bestwick M. Block B. Bloom S. Caldwell etal 2017. Unsupervised machine learning on a hybrid quantum computer. arXiv:1712.05771. J. S. Otterbach R. Manenti N. Alidoust A. Bestwick M. Block B. Bloom S. Caldwell et al. 2017. Unsupervised machine learning on a hybrid quantum computer. arXiv:1712.05771."},{"key":"e_1_2_1_39_1","doi-asserted-by":"publisher","DOI":"10.1103\/PhysRevLett.118.100503"},{"key":"e_1_2_1_40_1","doi-asserted-by":"crossref","unstructured":"Alejandro Perdomo-Ortiz Marcello Benedetti John Realpe-G\u00f3mez and Rupak Biswas. 2017. Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers. arXiv:1708.09757. Alejandro Perdomo-Ortiz Marcello Benedetti John Realpe-G\u00f3mez and Rupak Biswas. 2017. Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers. arXiv:1708.09757.","DOI":"10.1088\/2058-9565\/aab859"},{"key":"e_1_2_1_41_1","volume-title":"O\u2019Brien","author":"Peruzzo Alberto","year":"2014"},{"key":"e_1_2_1_42_1","volume-title":"Quantum computing in the NISQ era and beyond. Quantum 2 (Aug","author":"Preskill John","year":"2018"},{"key":"e_1_2_1_43_1","volume-title":"Zeng","author":"Smith Robert S.","year":"2016"},{"key":"e_1_2_1_44_1","doi-asserted-by":"publisher","DOI":"10.1109\/MCSE.2010.69"},{"key":"e_1_2_1_45_1","doi-asserted-by":"crossref","unstructured":"Krysta M. Svore Alan Geller Matthias Troyer John Azariah Christopher Granade Bettina Heim Vadym Kliuchnikov Mariia Mykhailova Andres Paz and Martin Roetteler. 2018. Q#: Enabling scalable quantum computing and development with a high-level domain-specific language. arXiv:1803.00652. Krysta M. Svore Alan Geller Matthias Troyer John Azariah Christopher Granade Bettina Heim Vadym Kliuchnikov Mariia Mykhailova Andres Paz and Martin Roetteler. 2018. Q#: Enabling scalable quantum computing and development with a high-level domain-specific language. arXiv:1803.00652.","DOI":"10.1145\/3183895.3183901"},{"key":"e_1_2_1_46_1","doi-asserted-by":"publisher","DOI":"10.1103\/PhysRevLett.119.180509"},{"key":"e_1_2_1_47_1","volume-title":"Proceedings of the 9th Annual Symposium on Combinatorial Search.","author":"Tran Tony T."},{"key":"e_1_2_1_48_1","volume-title":"Retrieved","author":"Valeev E. F.","year":"2019"},{"key":"e_1_2_1_49_1","doi-asserted-by":"publisher","DOI":"10.1038\/nphys4074"}],"container-title":["ACM Journal on Emerging Technologies in Computing Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3380964","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T10:59:23Z","timestamp":1672570763000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3380964"}},"subtitle":["A Language Extension Specification for the Heterogeneous Quantum-Classical Model of Computation"],"short-title":[],"issued":{"date-parts":[[2020,3,18]]},"references-count":49,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2020,4,30]]}},"alternative-id":["10.1145\/3380964"],"URL":"https:\/\/doi.org\/10.1145\/3380964","relation":{},"ISSN":["1550-4832","1550-4840"],"issn-type":[{"value":"1550-4832","type":"print"},{"value":"1550-4840","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,3,18]]},"assertion":[{"value":"2019-08-01","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2020-01-01","order":1,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2020-03-18","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}