{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,12]],"date-time":"2024-08-12T18:34:26Z","timestamp":1723487666165},"publisher-location":"New York, NY, USA","reference-count":26,"publisher":"ACM","license":[{"start":{"date-parts":[[2019,7,18]],"date-time":"2019-07-18T00:00:00Z","timestamp":1563408000000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.acm.org\/publications\/policies\/copyright_policy#Background"}],"funder":[{"DOI":"10.13039\/501100000038","name":"Natural Sciences and Engineering Research Council of Canada","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100000038","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2019,7,18]]},"DOI":"10.1145\/3331184.3331340","type":"proceedings-article","created":{"date-parts":[[2019,7,19]],"date-time":"2019-07-19T17:40:26Z","timestamp":1563558026000},"update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":63,"title":["Critically Examining the \"Neural Hype\""],"prefix":"10.1145","author":[{"given":"Wei","family":"Yang","sequence":"first","affiliation":[{"name":"University of Waterloo, Waterloo, ON, Canada"}]},{"given":"Kuang","family":"Lu","sequence":"additional","affiliation":[{"name":"University of Delaware, Newark, DE, USA"}]},{"given":"Peilin","family":"Yang","sequence":"additional","affiliation":[{"name":"No affiliation, San Francisco, CA, USA"}]},{"given":"Jimmy","family":"Lin","sequence":"additional","affiliation":[{"name":"University of Waterloo, Waterloo, ON, USA"}]}],"member":"320","published-online":{"date-parts":[[2019,7,18]]},"reference":[{"key":"e_1_3_2_1_1_1","doi-asserted-by":"crossref","unstructured":"Abdul-Jaleel et al. 2004. UMass at TREC 2004: Novelty and HARD. TREC. Abdul-Jaleel et al. 2004. UMass at TREC 2004: Novelty and HARD. TREC.","DOI":"10.21236\/ADA460118"},{"key":"e_1_3_2_1_2_1","doi-asserted-by":"publisher","DOI":"10.1145\/3121050.3121059"},{"key":"e_1_3_2_1_3_1","doi-asserted-by":"publisher","DOI":"10.1145\/1645953.1646031"},{"key":"e_1_3_2_1_4_1","doi-asserted-by":"publisher","DOI":"10.1145\/1571941.1572114"},{"key":"e_1_3_2_1_5_1","unstructured":"Fan et al. 2017. MatchZoo: A Toolkit for Deep Text Matching. arXiv:1707.07270. Fan et al. 2017. MatchZoo: A Toolkit for Deep Text Matching. arXiv:1707.07270."},{"key":"e_1_3_2_1_6_1","doi-asserted-by":"publisher","DOI":"10.1145\/2766462.2767780"},{"key":"e_1_3_2_1_7_1","doi-asserted-by":"publisher","DOI":"10.1145\/2983323.2983769"},{"key":"e_1_3_2_1_8_1","unstructured":"Hu et al. 2014. Convolutional Neural Network Architectures for Matching Natural Language Sentences. NIPS. Hu et al. 2014. Convolutional Neural Network Architectures for Matching Natural Language Sentences. NIPS."},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.1145\/2505515.2505665"},{"key":"e_1_3_2_1_10_1","doi-asserted-by":"publisher","DOI":"10.1145\/2882782"},{"key":"e_1_3_2_1_11_1","doi-asserted-by":"publisher","DOI":"10.1145\/3308774.3308781"},{"key":"e_1_3_2_1_12_1","unstructured":"Lipton and Steinhardt. 2018. Troubling Trends in Machine Learning Scholarship. arXiv:1807.03341. Lipton and Steinhardt. 2018. Troubling Trends in Machine Learning Scholarship. arXiv:1807.03341."},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"publisher","DOI":"10.1145\/3331184.3331317"},{"key":"e_1_3_2_1_14_1","doi-asserted-by":"crossref","unstructured":"Mitra and Craswell. 2017. Neural Models for Information Retrieval. arXiv:1705.01509. Mitra and Craswell. 2017. Neural Models for Information Retrieval. arXiv:1705.01509.","DOI":"10.1145\/3018661.3022755"},{"key":"e_1_3_2_1_15_1","doi-asserted-by":"publisher","DOI":"10.1145\/3038912.3052579"},{"key":"e_1_3_2_1_16_1","doi-asserted-by":"crossref","unstructured":"Rao et al. 2019. Multi-Perspective Relevance Matching with Hierarchical ConvNets for Social Media Search. AAAI. Rao et al. 2019. Multi-Perspective Relevance Matching with Hierarchical ConvNets for Social Media Search. AAAI.","DOI":"10.1609\/aaai.v33i01.3301232"},{"key":"e_1_3_2_1_17_1","volume-title":"ICLR Workshops.","author":"Sculley","year":"2018"},{"key":"e_1_3_2_1_18_1","doi-asserted-by":"publisher","DOI":"10.1145\/2567948.2577348"},{"key":"e_1_3_2_1_19_1","doi-asserted-by":"publisher","DOI":"10.1145\/3196826"},{"key":"e_1_3_2_1_20_1","doi-asserted-by":"crossref","unstructured":"Wan et al. 2016. A Deep Architecture for Semantic Matching with Multiple Positional Sentence Representations. AAAI. Wan et al. 2016. A Deep Architecture for Semantic Matching with Multiple Positional Sentence Representations. AAAI.","DOI":"10.1609\/aaai.v30i1.10342"},{"key":"e_1_3_2_1_21_1","doi-asserted-by":"publisher","DOI":"10.1145\/3077136.3080809"},{"key":"e_1_3_2_1_22_1","doi-asserted-by":"publisher","DOI":"10.1145\/2983323.2983818"},{"key":"e_1_3_2_1_23_1","doi-asserted-by":"publisher","DOI":"10.1145\/3239571"},{"key":"e_1_3_2_1_24_1","doi-asserted-by":"crossref","unstructured":"Yang et al. 2019. End-to-End Open-Domain Question Answering with BERTserini. NAACL. Yang et al. 2019. End-to-End Open-Domain Question Answering with BERTserini. NAACL.","DOI":"10.18653\/v1\/N19-4013"},{"key":"e_1_3_2_1_25_1","unstructured":"Yang et al. 2019. Simple Applications of BERT for Ad Hoc Document Retrieval. arXiv:1903.10972. Yang et al. 2019. Simple Applications of BERT for Ad Hoc Document Retrieval. arXiv:1903.10972."},{"key":"e_1_3_2_1_26_1","doi-asserted-by":"publisher","DOI":"10.1145\/2970398.2970405"}],"event":{"name":"SIGIR '19: The 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","location":"Paris France","acronym":"SIGIR '19","sponsor":["SIGIR ACM Special Interest Group on Information Retrieval"]},"container-title":["Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3331184.3331340","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,7]],"date-time":"2023-01-07T21:12:11Z","timestamp":1673125931000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3331184.3331340"}},"subtitle":["Weak Baselines and the Additivity of Effectiveness Gains from Neural Ranking Models"],"short-title":[],"issued":{"date-parts":[[2019,7,18]]},"references-count":26,"alternative-id":["10.1145\/3331184.3331340","10.1145\/3331184"],"URL":"https:\/\/doi.org\/10.1145\/3331184.3331340","relation":{},"subject":[],"published":{"date-parts":[[2019,7,18]]},"assertion":[{"value":"2019-07-18","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}