{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T20:47:20Z","timestamp":1730321240791,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":57,"publisher":"ACM","license":[{"start":{"date-parts":[[2019,7,18]],"date-time":"2019-07-18T00:00:00Z","timestamp":1563408000000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.acm.org\/publications\/policies\/copyright_policy#Background"}],"funder":[{"DOI":"10.13039\/100012537","name":"Australian Research Council","doi-asserted-by":"publisher","award":["DP160102686"],"id":[{"id":"10.13039\/100012537","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2019,7,18]]},"DOI":"10.1145\/3331184.3331207","type":"proceedings-article","created":{"date-parts":[[2019,7,19]],"date-time":"2019-07-19T17:40:26Z","timestamp":1563558026000},"page":"485-494","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":12,"title":["Accelerated Query Processing Via Similarity Score Prediction"],"prefix":"10.1145","author":[{"given":"Matthias","family":"Petri","sequence":"first","affiliation":[{"name":"The University of Melbourne, Melbourne, Australia"}]},{"given":"Alistair","family":"Moffat","sequence":"additional","affiliation":[{"name":"The University of Melbourne, Melbourne, Australia"}]},{"given":"Joel","family":"Mackenzie","sequence":"additional","affiliation":[{"name":"RMIT University, Melbourne, Australia"}]},{"given":"J. Shane","family":"Culpepper","sequence":"additional","affiliation":[{"name":"RMIT University, Melbourne, Australia"}]},{"given":"Daniel","family":"Beck","sequence":"additional","affiliation":[{"name":"The University of Melbourne, Melbourne, Australia"}]}],"member":"320","published-online":{"date-parts":[[2019,7,18]]},"reference":[{"key":"e_1_3_2_1_1_1","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/K16-1021"},{"key":"e_1_3_2_1_2_1","doi-asserted-by":"publisher","DOI":"10.1145\/956863.956944"},{"key":"e_1_3_2_1_3_1","first-page":"23","article-title":"From RankNet to LambdaRank to LambdaMart: An overview","volume":"11","author":"Burges C.","year":"2010","unstructured":"C. Burges . From RankNet to LambdaRank to LambdaMart: An overview . Learning , 11 ( 23 -- 581 ): 81, 2010 . C. Burges. From RankNet to LambdaRank to LambdaMart: An overview. Learning, 11 (23--581): 81, 2010.","journal-title":"Learning"},{"key":"e_1_3_2_1_4_1","doi-asserted-by":"publisher","DOI":"10.1145\/1718487.1718538"},{"key":"e_1_3_2_1_5_1","doi-asserted-by":"publisher","DOI":"10.1145\/3077136.3080819"},{"key":"e_1_3_2_1_6_1","doi-asserted-by":"publisher","DOI":"10.1017\/S0266466600006277"},{"key":"e_1_3_2_1_7_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10791-016-9279-1"},{"key":"e_1_3_2_1_8_1","doi-asserted-by":"publisher","DOI":"10.1145\/1507509"},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.1145\/3015022.3015026"},{"key":"e_1_3_2_1_10_1","first-page":"2892","volume-title":"Proc. AAAI","author":"Dabney W.","year":"2018","unstructured":"W. Dabney , M. Rowland , M. G. Bellemare , and R. Munos . Distributional reinforcement learning with quantile regression . In Proc. AAAI , pages 2892 -- 2901 , 2018 . W. Dabney, M. Rowland, M. G. Bellemare, and R. Munos. Distributional reinforcement learning with quantile regression. In Proc. AAAI, pages 2892--2901, 2018."},{"key":"e_1_3_2_1_11_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10791-017-9298-6"},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1145\/2987380"},{"key":"e_1_3_2_1_13_1","first-page":"178","article-title":"Heuristics to improve the BMW method and its variants","volume":"6","author":"de Carvalho L. L. S.","year":"2015","unstructured":"L. L. S. de Carvalho , E. S. de Moura , C. M. Daoud , and A. S. da Silva . Heuristics to improve the BMW method and its variants . J. Data Inf. Qual. , 6 : 178 -- 191 , 2015 . L. L. S. de Carvalho, E. S. de Moura, C. M. Daoud, and A. S. da Silva. Heuristics to improve the BMW method and its variants. J. Data Inf. Qual., 6: 178--191, 2015.","journal-title":"J. Data Inf. Qual."},{"key":"e_1_3_2_1_14_1","doi-asserted-by":"publisher","DOI":"10.1145\/2939672.2939862"},{"key":"e_1_3_2_1_15_1","doi-asserted-by":"publisher","DOI":"10.1145\/2433396.2433412"},{"key":"e_1_3_2_1_16_1","doi-asserted-by":"publisher","DOI":"10.1145\/2009916.2010048"},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"publisher","DOI":"10.14778\/3402755.3402756"},{"key":"e_1_3_2_1_18_1","doi-asserted-by":"publisher","DOI":"10.1214\/aos\/1013203451"},{"key":"e_1_3_2_1_19_1","first-page":"1050","volume-title":"Proc. ICML","author":"Gal Y.","year":"2016","unstructured":"Y. Gal and Z. Ghahramani . Dropout as a Bayesian approximation: Representing model uncertainty in deep learning . In Proc. ICML , pages 1050 -- 1059 , 2016 . Y. Gal and Z. Ghahramani. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. In Proc. ICML, pages 1050--1059, 2016."},{"key":"e_1_3_2_1_20_1","doi-asserted-by":"publisher","DOI":"10.1145\/2983323.2983835"},{"key":"e_1_3_2_1_21_1","first-page":"282","volume-title":"Proc. UAI","author":"Hensman J.","year":"2013","unstructured":"J. Hensman , N. Fusi , and N. D. Lawrence . Gaussian processes for big data . In Proc. UAI , pages 282 -- 290 , 2013 . J. Hensman, N. Fusi, and N. D. Lawrence. Gaussian processes for big data. In Proc. UAI, pages 282--290, 2013."},{"key":"e_1_3_2_1_22_1","doi-asserted-by":"publisher","DOI":"10.1214\/aoms\/1177703732"},{"key":"e_1_3_2_1_23_1","first-page":"448","volume-title":"Proc. ICML","author":"Ioffe S.","year":"2015","unstructured":"S. Ioffe and C. Szegedy . Batch normalization: Accelerating deep network training by reducing internal covariate shift . In Proc. ICML , pages 448 -- 456 , 2015 . S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proc. ICML, pages 448--456, 2015."},{"key":"e_1_3_2_1_24_1","doi-asserted-by":"publisher","DOI":"10.1145\/2911451.2911520"},{"key":"e_1_3_2_1_25_1","doi-asserted-by":"publisher","DOI":"10.1145\/3209978.3210066"},{"key":"e_1_3_2_1_26_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-30671-1_11"},{"key":"e_1_3_2_1_27_1","first-page":"1","volume-title":"Proc. ICLR","author":"Kingma D. P.","year":"2015","unstructured":"D. P. Kingma and J. Ba . Adam: A method for stochastic optimization . In Proc. ICLR , pages 1 -- 15 , 2015 . D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proc. ICLR, pages 1--15, 2015."},{"key":"e_1_3_2_1_28_1","doi-asserted-by":"publisher","DOI":"10.1145\/3183713.3196909"},{"key":"e_1_3_2_1_29_1","first-page":"3288","volume-title":"Proc. NeurIPS","author":"Louizos C.","year":"2017","unstructured":"C. Louizos , K. Ullrich , and M. Welling . Bayesian compression for deep learning . In Proc. NeurIPS , pages 3288 -- 3298 , 2017 . C. Louizos, K. Ullrich, and M. Welling. Bayesian compression for deep learning. In Proc. NeurIPS, pages 3288--3298, 2017."},{"key":"e_1_3_2_1_30_1","doi-asserted-by":"publisher","DOI":"10.1145\/2766462.2767733"},{"key":"e_1_3_2_1_31_1","doi-asserted-by":"publisher","DOI":"10.1145\/2911451.2914758"},{"key":"e_1_3_2_1_32_1","doi-asserted-by":"publisher","DOI":"10.1145\/3077136.3080725"},{"key":"e_1_3_2_1_33_1","doi-asserted-by":"publisher","DOI":"10.1145\/3077136.3080827"},{"key":"e_1_3_2_1_34_1","doi-asserted-by":"publisher","DOI":"10.1162\/neco.1992.4.3.415"},{"key":"e_1_3_2_1_35_1","doi-asserted-by":"publisher","DOI":"10.1145\/3159652.3159676"},{"key":"e_1_3_2_1_36_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-15712-8_22"},{"key":"e_1_3_2_1_37_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-15712-8_52"},{"key":"e_1_3_2_1_38_1","doi-asserted-by":"publisher","DOI":"10.1145\/3077136.3080780"},{"key":"e_1_3_2_1_39_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-15712-8_23"},{"key":"e_1_3_2_1_40_1","doi-asserted-by":"publisher","DOI":"10.1145\/1272743.1272749"},{"key":"e_1_3_2_1_41_1","doi-asserted-by":"publisher","DOI":"10.1561\/1500000061"},{"volume-title":"Machine Learning: A Probabilistic Perspective","year":"2012","author":"Murphy K. P.","key":"e_1_3_2_1_42_1","unstructured":"K. P. Murphy . Machine Learning: A Probabilistic Perspective . MIT Press , 2012 . K. P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, 2012."},{"key":"e_1_3_2_1_43_1","doi-asserted-by":"publisher","DOI":"10.1145\/2600428.2609615"},{"key":"e_1_3_2_1_44_1","first-page":"1550","volume-title":"Proc. NeurIPS","author":"Peter S.","year":"2017","unstructured":"S. Peter , F. Diego , F. A. Hamprecht , and B. Nadler . Cost efficient gradient boosting . In Proc. NeurIPS , pages 1550 -- 1560 , 2017 . S. Peter, F. Diego, F. A. Hamprecht, and B. Nadler. Cost efficient gradient boosting. In Proc. NeurIPS, pages 1550--1560, 2017."},{"key":"e_1_3_2_1_45_1","doi-asserted-by":"publisher","DOI":"10.1145\/2537734.2537744"},{"volume-title":"Gaussian Processes for Machine Learning","year":"2006","author":"Rasmussen C. E.","key":"e_1_3_2_1_46_1","unstructured":"C. E. Rasmussen and C. K. I. Williams . Gaussian Processes for Machine Learning . MIT Press , 2006 . C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006."},{"key":"e_1_3_2_1_47_1","doi-asserted-by":"publisher","DOI":"10.5555\/2627435.2670313"},{"key":"e_1_3_2_1_48_1","doi-asserted-by":"publisher","DOI":"10.1145\/1076034.1076074"},{"key":"e_1_3_2_1_49_1","doi-asserted-by":"publisher","DOI":"10.5555\/1316689.1316746"},{"key":"e_1_3_2_1_50_1","doi-asserted-by":"publisher","DOI":"10.1145\/2433396.2433407"},{"key":"e_1_3_2_1_51_1","doi-asserted-by":"publisher","DOI":"10.1016\/0306-4573(95)00020-H"},{"key":"e_1_3_2_1_52_1","first-page":"195","volume-title":"Studies in Bayesian Econometrics and Statistics in Honor of Leonard J. Savage","author":"Varian H.","year":"1975","unstructured":"H. Varian . A Bayesian approach to real estate assessment. In S. E. Fienberg and A. Zellner, editors , Studies in Bayesian Econometrics and Statistics in Honor of Leonard J. Savage , pages 195 -- 208 . 1975 . H. Varian. A Bayesian approach to real estate assessment. In S. E. Fienberg and A. Zellner, editors, Studies in Bayesian Econometrics and Statistics in Honor of Leonard J. Savage, pages 195--208. 1975."},{"key":"e_1_3_2_1_53_1","doi-asserted-by":"publisher","DOI":"10.1145\/2009916.2009934"},{"key":"e_1_3_2_1_54_1","doi-asserted-by":"publisher","DOI":"10.1145\/2661829.2661914"},{"key":"e_1_3_2_1_55_1","doi-asserted-by":"publisher","DOI":"10.5555\/2627435.2670319"},{"key":"e_1_3_2_1_56_1","doi-asserted-by":"publisher","DOI":"10.1145\/2939672.2939677"},{"key":"e_1_3_2_1_57_1","doi-asserted-by":"publisher","DOI":"10.1145\/3269206.3271800"}],"event":{"name":"SIGIR '19: The 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","sponsor":["SIGIR ACM Special Interest Group on Information Retrieval"],"location":"Paris France","acronym":"SIGIR '19"},"container-title":["Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3331184.3331207","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,7]],"date-time":"2023-01-07T21:01:05Z","timestamp":1673125265000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3331184.3331207"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,7,18]]},"references-count":57,"alternative-id":["10.1145\/3331184.3331207","10.1145\/3331184"],"URL":"https:\/\/doi.org\/10.1145\/3331184.3331207","relation":{},"subject":[],"published":{"date-parts":[[2019,7,18]]},"assertion":[{"value":"2019-07-18","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}