{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T20:43:25Z","timestamp":1730321005059,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":28,"publisher":"ACM","license":[{"start":{"date-parts":[[2019,7,5]],"date-time":"2019-07-05T00:00:00Z","timestamp":1562284800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.acm.org\/publications\/policies\/copyright_policy#Background"}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2019,7,5]]},"DOI":"10.1145\/3329859.3329875","type":"proceedings-article","created":{"date-parts":[[2019,5,24]],"date-time":"2019-05-24T17:20:27Z","timestamp":1558718427000},"page":"1-8","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":52,"title":["Cardinality estimation with local deep learning models"],"prefix":"10.1145","author":[{"given":"Lucas","family":"Woltmann","sequence":"first","affiliation":[{"name":"Technische Universit\u00e4t Dresden, Dresden, Germany"}]},{"given":"Claudio","family":"Hartmann","sequence":"additional","affiliation":[{"name":"Technische Universit\u00e4t Dresden, Dresden, Germany"}]},{"given":"Maik","family":"Thiele","sequence":"additional","affiliation":[{"name":"Technische Universit\u00e4t Dresden, Dresden, Germany"}]},{"given":"Dirk","family":"Habich","sequence":"additional","affiliation":[{"name":"Technische Universit\u00e4t Dresden, Dresden, Germany"}]},{"given":"Wolfgang","family":"Lehner","sequence":"additional","affiliation":[{"name":"Technische Universit\u00e4t Dresden, Dresden, Germany"}]}],"member":"320","published-online":{"date-parts":[[2019,7,5]]},"reference":[{"key":"e_1_3_2_1_1_1","doi-asserted-by":"publisher","DOI":"10.1145\/1553374.1553380"},{"key":"e_1_3_2_1_2_1","doi-asserted-by":"publisher","DOI":"10.1145\/564691.564722"},{"key":"e_1_3_2_1_3_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICDE.2011.5767901"},{"key":"e_1_3_2_1_4_1","doi-asserted-by":"publisher","DOI":"10.1145\/1007568.1007641"},{"key":"e_1_3_2_1_5_1","doi-asserted-by":"publisher","DOI":"10.1145\/169725.169708"},{"key":"e_1_3_2_1_6_1","doi-asserted-by":"publisher","DOI":"10.1145\/223784.223841"},{"key":"e_1_3_2_1_7_1","unstructured":"H V Jagadish Nick Koudas S Muthukrishnan Viswanath Poosala Ken Sevcik and Torsten Suel. 1998. Optimal Histograms with Quality Guarantees. In VLDB. 275--286. H V Jagadish Nick Koudas S Muthukrishnan Viswanath Poosala Ken Sevcik and Torsten Suel. 1998. Optimal Histograms with Quality Guarantees. In VLDB. 275--286."},{"key":"e_1_3_2_1_8_1","first-page":"1793","article-title":"Statistical normalization and back propagation for classification","volume":"3","author":"Jayalakshmi T","year":"2011","unstructured":"T Jayalakshmi and A Santhakumaran . 2011 . Statistical normalization and back propagation for classification . IJCTE 3 , 1 (2011), 1793 -- 8201 . T Jayalakshmi and A Santhakumaran. 2011. Statistical normalization and back propagation for classification. IJCTE 3, 1 (2011), 1793--8201.","journal-title":"IJCTE"},{"key":"e_1_3_2_1_9_1","volume-title":"Global Optimization: Operator Placement Strategies in Heterogeneous Environments. In EDBT\/ICDT Workshops. 48--55","author":"Karnagel Tomas","year":"2015","unstructured":"Tomas Karnagel , Dirk Habich , and Wolfgang Lehner . 2015 . Local vs . Global Optimization: Operator Placement Strategies in Heterogeneous Environments. In EDBT\/ICDT Workshops. 48--55 . Tomas Karnagel, Dirk Habich, and Wolfgang Lehner. 2015. Local vs. Global Optimization: Operator Placement Strategies in Heterogeneous Environments. In EDBT\/ICDT Workshops. 48--55."},{"key":"e_1_3_2_1_10_1","doi-asserted-by":"publisher","DOI":"10.14778\/3067421.3067423"},{"key":"e_1_3_2_1_11_1","volume-title":"Learned Cardinalities: Estimating Correlated Joins with Deep Learning. In CIDR.","author":"Kipf Andreas","year":"2019","unstructured":"Andreas Kipf , Thomas Kipf , Bernhard Radke , Viktor Leis , Peter A. Boncz , and Alfons Kemper . 2019 . Learned Cardinalities: Estimating Correlated Joins with Deep Learning. In CIDR. Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and Alfons Kemper. 2019. Learned Cardinalities: Estimating Correlated Joins with Deep Learning. In CIDR."},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1145\/3183713.3196909"},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.cognition.2008.11.014"},{"key":"e_1_3_2_1_14_1","unstructured":"Seetha Lakshmi and Shaoyu Zhou. 1998. Selectivity estimation in extensible databases-A neural network approach. In VLDB. 623--627. Seetha Lakshmi and Shaoyu Zhou. 1998. Selectivity estimation in extensible databases-A neural network approach. In VLDB. 623--627."},{"key":"e_1_3_2_1_15_1","doi-asserted-by":"publisher","DOI":"10.14778\/2850583.2850594"},{"key":"e_1_3_2_1_16_1","unstructured":"Henry Liu Mingbin Xu Ziting Yu Vincent Corvinelli and Calisto Zuzarte. 2015. Cardinality Estimation Using Neural Networks. In CASCON. 53--59. Henry Liu Mingbin Xu Ziting Yu Vincent Corvinelli and Calisto Zuzarte. 2015. Cardinality Estimation Using Neural Networks. In CASCON. 53--59."},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"publisher","DOI":"10.1145\/3211954.3211957"},{"key":"e_1_3_2_1_18_1","volume-title":"Flexible Operator Embeddings via Deep Learning. arXiv:1901.09090","author":"Marcus Ryan","year":"2019","unstructured":"Ryan Marcus and Olga Papaemmanouil . 2019. Flexible Operator Embeddings via Deep Learning. arXiv:1901.09090 ( 2019 ). Ryan Marcus and Olga Papaemmanouil. 2019. Flexible Operator Embeddings via Deep Learning. arXiv:1901.09090 (2019)."},{"key":"e_1_3_2_1_19_1","doi-asserted-by":"publisher","DOI":"10.1145\/1007568.1007642"},{"key":"e_1_3_2_1_20_1","doi-asserted-by":"publisher","DOI":"10.14778\/1687627.1687738"},{"key":"e_1_3_2_1_21_1","doi-asserted-by":"publisher","DOI":"10.1145\/111197.111218"},{"key":"e_1_3_2_1_22_1","volume-title":"M M Sober, J R M Benedito, and A J S Lopez.","author":"Olivas E S","year":"2009","unstructured":"E S Olivas , J D M Guerrero , M M Sober, J R M Benedito, and A J S Lopez. 2009 . Handbook Of Research On Machine Learning Applications and Trends: Algorithms, Methods and Techniques . E S Olivas, J D M Guerrero, M M Sober, J R M Benedito, and A J S Lopez. 2009. Handbook Of Research On Machine Learning Applications and Trends: Algorithms, Methods and Techniques."},{"key":"e_1_3_2_1_23_1","volume-title":"Learning state representations for query optimization with deep reinforcement learning. arXiv:1803.08604","author":"Ortiz Jennifer","year":"2018","unstructured":"Jennifer Ortiz , Magdalena Balazinska , Johannes Gehrke , and S Sathiya Keerthi . 2018. Learning state representations for query optimization with deep reinforcement learning. arXiv:1803.08604 ( 2018 ). Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S Sathiya Keerthi. 2018. Learning state representations for query optimization with deep reinforcement learning. arXiv:1803.08604 (2018)."},{"key":"e_1_3_2_1_24_1","doi-asserted-by":"publisher","DOI":"10.1145\/602259.602294"},{"key":"e_1_3_2_1_25_1","doi-asserted-by":"publisher","DOI":"10.1145\/233269.233342"},{"key":"e_1_3_2_1_26_1","first-page":"486","article-title":"Selectivity estimation without the attribute value independence assumption","volume":"97","author":"Poosala Viswanath","year":"1997","unstructured":"Viswanath Poosala and Yannis E Ioannidis . 1997 . Selectivity estimation without the attribute value independence assumption . In VLDB , Vol. 97. 486 -- 495 . Viswanath Poosala and Yannis E Ioannidis. 1997. Selectivity estimation without the attribute value independence assumption. In VLDB, Vol. 97. 486--495.","journal-title":"VLDB"},{"key":"e_1_3_2_1_27_1","unstructured":"Viktor Rosenfeld Max Heimel Christoph Viebig and Volker Markl. 2015. The Operator Variant Selection Problem on Heterogeneous Hardware. In ADMS@VLDB. 1--12. Viktor Rosenfeld Max Heimel Christoph Viebig and Volker Markl. 2015. The Operator Variant Selection Problem on Heterogeneous Hardware. In ADMS@VLDB. 1--12."},{"key":"e_1_3_2_1_28_1","volume-title":"Curriculum Learning by Transfer Learning: Theory and Experiments with Deep Networks. arXiv:1802.03796","author":"Weinshall Daphna","year":"2018","unstructured":"Daphna Weinshall , Gad Cohen , and Dan Amir . 2018. Curriculum Learning by Transfer Learning: Theory and Experiments with Deep Networks. arXiv:1802.03796 ( 2018 ). Daphna Weinshall, Gad Cohen, and Dan Amir. 2018. Curriculum Learning by Transfer Learning: Theory and Experiments with Deep Networks. arXiv:1802.03796 (2018)."}],"event":{"name":"SIGMOD\/PODS '19: International Conference on Management of Data","sponsor":["SIGMOD ACM Special Interest Group on Management of Data"],"location":"Amsterdam Netherlands","acronym":"SIGMOD\/PODS '19"},"container-title":["Proceedings of the Second International Workshop on Exploiting Artificial Intelligence Techniques for Data Management"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3329859.3329875","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,7]],"date-time":"2023-01-07T06:47:26Z","timestamp":1673074046000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3329859.3329875"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,7,5]]},"references-count":28,"alternative-id":["10.1145\/3329859.3329875","10.1145\/3329859"],"URL":"https:\/\/doi.org\/10.1145\/3329859.3329875","relation":{},"subject":[],"published":{"date-parts":[[2019,7,5]]},"assertion":[{"value":"2019-07-05","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}