{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,8]],"date-time":"2024-09-08T07:38:30Z","timestamp":1725781110543},"publisher-location":"New York, NY, USA","reference-count":18,"publisher":"ACM","license":[{"start":{"date-parts":[[2019,6,2]],"date-time":"2019-06-02T00:00:00Z","timestamp":1559433600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.acm.org\/publications\/policies\/copyright_policy#Background"}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2019,6,2]]},"DOI":"10.1145\/3316781.3317853","type":"proceedings-article","created":{"date-parts":[[2019,5,23]],"date-time":"2019-05-23T18:07:13Z","timestamp":1558634833000},"page":"1-6","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":13,"title":["LL-PCM"],"prefix":"10.1145","author":[{"given":"Nam Sung","family":"Kim","sequence":"first","affiliation":[{"name":"Samsung Electronics"}]},{"given":"Choungki","family":"Song","sequence":"additional","affiliation":[{"name":"University of Wisconsin"}]},{"given":"Woo Young","family":"Cho","sequence":"additional","affiliation":[{"name":"Samsung Electronics"}]},{"given":"Jian","family":"Huang","sequence":"additional","affiliation":[{"name":"University of Illinois"}]},{"given":"Myoungsoo","family":"Jung","sequence":"additional","affiliation":[{"name":"KAIST"}]}],"member":"320","published-online":{"date-parts":[[2019,6,2]]},"reference":[{"key":"e_1_3_2_1_1_1","doi-asserted-by":"publisher","DOI":"10.1145\/1629911.1630086"},{"key":"e_1_3_2_1_2_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCD.2011.6081427"},{"key":"e_1_3_2_1_3_1","doi-asserted-by":"publisher","DOI":"10.1109\/MICRO.2012.30"},{"key":"e_1_3_2_1_4_1","volume-title":"A 20nm 1.8 V 8Gb PRAM with 40MB\/s Program Bandwidth,\" IEEE ISSCC","author":"Choi Y.","year":"2012","unstructured":"Y. Choi , , \" A 20nm 1.8 V 8Gb PRAM with 40MB\/s Program Bandwidth,\" IEEE ISSCC , 2012 . Y. Choi, et al., \"A 20nm 1.8 V 8Gb PRAM with 40MB\/s Program Bandwidth,\" IEEE ISSCC, 2012."},{"key":"e_1_3_2_1_5_1","volume-title":"A 90 nm 1.8 V 512 Mb Diode-Switch PRAM with 266 MB\/s Read Throughput,\" JSSC, 43(1)","author":"Lee K.","year":"2008","unstructured":"K. Lee , , \" A 90 nm 1.8 V 512 Mb Diode-Switch PRAM with 266 MB\/s Read Throughput,\" JSSC, 43(1) , 2008 . K. Lee, et al., \"A 90 nm 1.8 V 512 Mb Diode-Switch PRAM with 266 MB\/s Read Throughput,\" JSSC, 43(1), 2008."},{"key":"e_1_3_2_1_6_1","doi-asserted-by":"publisher","DOI":"10.1109\/MCAS.2009.935695"},{"key":"e_1_3_2_1_7_1","volume-title":"A 0.1-μm 1.8-V 256-Mb Phase-Change Random Access Memory (PRAM) with 66-MHz Synchronous Burst-Read Operation,\" IEEE JSSC, 42(1)","author":"Kang S.","year":"2007","unstructured":"S. Kang , , \" A 0.1-μm 1.8-V 256-Mb Phase-Change Random Access Memory (PRAM) with 66-MHz Synchronous Burst-Read Operation,\" IEEE JSSC, 42(1) , 2007 . S. Kang, et al., \"A 0.1-μm 1.8-V 256-Mb Phase-Change Random Access Memory (PRAM) with 66-MHz Synchronous Burst-Read Operation,\" IEEE JSSC, 42(1), 2007."},{"key":"e_1_3_2_1_8_1","volume-title":"A 7ns 140-mW 1-Mb CMOS SRAM with Current Sense Amplifier,\" IEEE JSSC, 27(11)","author":"Sasaki K.","year":"1992","unstructured":"K. Sasaki , , \" A 7ns 140-mW 1-Mb CMOS SRAM with Current Sense Amplifier,\" IEEE JSSC, 27(11) , 1992 . K. Sasaki, et al., \"A 7ns 140-mW 1-Mb CMOS SRAM with Current Sense Amplifier,\" IEEE JSSC, 27(11), 1992."},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.1109\/ISCAS.2009.5118476"},{"key":"e_1_3_2_1_10_1","volume-title":"1.2 V 1.6 Gb\/s 56nm 6F2 4Gb DDR3 SDRAM with Hybrid I\/O Sense Amplifier and Segmented Sub-Array Architecture,\" IEEE ISSCC","author":"Moon Y.","year":"2009","unstructured":"Y. Moon , , \" 1.2 V 1.6 Gb\/s 56nm 6F2 4Gb DDR3 SDRAM with Hybrid I\/O Sense Amplifier and Segmented Sub-Array Architecture,\" IEEE ISSCC , 2009 . Y. Moon, et al., \"1.2 V 1.6 Gb\/s 56nm 6F2 4Gb DDR3 SDRAM with Hybrid I\/O Sense Amplifier and Segmented Sub-Array Architecture,\" IEEE ISSCC, 2009."},{"key":"e_1_3_2_1_11_1","doi-asserted-by":"publisher","DOI":"10.1109\/TCAD.2012.2185930"},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1109\/HPCA.2013.6522338"},{"key":"e_1_3_2_1_13_1","volume-title":"Reducing Read Latency of Phase Change Memory via Early Read and Turbo read,\" IEEE HPCA","author":"Nair P.","year":"2015","unstructured":"P. Nair , , \" Reducing Read Latency of Phase Change Memory via Early Read and Turbo read,\" IEEE HPCA , 2015 . P. Nair, et al., \"Reducing Read Latency of Phase Change Memory via Early Read and Turbo read,\" IEEE HPCA, 2015."},{"key":"e_1_3_2_1_14_1","volume-title":"A Low Power and Reliable Charge Pump Design for Phase Change Memories,\" ACM\/IEEE ISCA","author":"Jiang L.","year":"2014","unstructured":"L. Jiang , , \" A Low Power and Reliable Charge Pump Design for Phase Change Memories,\" ACM\/IEEE ISCA , 2014 . L. Jiang, et al., \"A Low Power and Reliable Charge Pump Design for Phase Change Memories,\" ACM\/IEEE ISCA, 2014."},{"key":"e_1_3_2_1_15_1","unstructured":"\"International Technology Roadmap for Semiconductor (ITRS) \" 2015. \"International Technology Roadmap for Semiconductor (ITRS) \" 2015."},{"key":"e_1_3_2_1_16_1","volume-title":"3-D ICs: A Novel Chip Design for Improving Deep-Submicrometer Interconnect Performance and Systems-on-Chip Integration,\" Proceedings of the IEEE, 89(5)","author":"Banerjee K.","year":"2001","unstructured":"K. Banerjee , , \" 3-D ICs: A Novel Chip Design for Improving Deep-Submicrometer Interconnect Performance and Systems-on-Chip Integration,\" Proceedings of the IEEE, 89(5) , 2001 . K. Banerjee, et al., \"3-D ICs: A Novel Chip Design for Improving Deep-Submicrometer Interconnect Performance and Systems-on-Chip Integration,\" Proceedings of the IEEE, 89(5), 2001."},{"key":"e_1_3_2_1_17_1","unstructured":"S. Lai \"Current Status of the Phase Change Memory and Its Future \" in ACM\/IEEE IEDM 2003. S. Lai \"Current Status of the Phase Change Memory and Its Future \" in ACM\/IEEE IEDM 2003."},{"key":"e_1_3_2_1_18_1","doi-asserted-by":"publisher","DOI":"10.1116\/1.3301579"}],"event":{"name":"DAC '19: The 56th Annual Design Automation Conference 2019","sponsor":["SIGDA ACM Special Interest Group on Design Automation","IEEE-CEDA","SIGBED ACM Special Interest Group on Embedded Systems"],"location":"Las Vegas NV USA","acronym":"DAC '19"},"container-title":["Proceedings of the 56th Annual Design Automation Conference 2019"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3316781.3317853","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,6]],"date-time":"2023-01-06T03:28:24Z","timestamp":1672975704000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3316781.3317853"}},"subtitle":["Low-Latency Phase Change Memory Architecture"],"short-title":[],"issued":{"date-parts":[[2019,6,2]]},"references-count":18,"alternative-id":["10.1145\/3316781.3317853","10.1145\/3316781"],"URL":"https:\/\/doi.org\/10.1145\/3316781.3317853","relation":{},"subject":[],"published":{"date-parts":[[2019,6,2]]},"assertion":[{"value":"2019-06-02","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}