{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T20:44:44Z","timestamp":1730321084973,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":26,"publisher":"ACM","license":[{"start":{"date-parts":[[2019,6,2]],"date-time":"2019-06-02T00:00:00Z","timestamp":1559433600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.acm.org\/publications\/policies\/copyright_policy#Background"}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2019,6,2]]},"DOI":"10.1145\/3316781.3317795","type":"proceedings-article","created":{"date-parts":[[2019,5,23]],"date-time":"2019-05-23T18:07:13Z","timestamp":1558634833000},"page":"1-6","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":20,"title":["DeePattern"],"prefix":"10.1145","author":[{"given":"Haoyu","family":"Yang","sequence":"first","affiliation":[{"name":"Chinese University of Hong Kong"}]},{"given":"Piyush","family":"Pathak","sequence":"additional","affiliation":[{"name":"Cadence Design Systems, Inc."}]},{"given":"Frank","family":"Gennari","sequence":"additional","affiliation":[{"name":"Cadence Design Systems, Inc."}]},{"given":"Ya-Chieh","family":"Lai","sequence":"additional","affiliation":[{"name":"Cadence Design Systems, Inc."}]},{"given":"Bei","family":"Yu","sequence":"additional","affiliation":[{"name":"Chinese University of Hong Kong"}]}],"member":"320","published-online":{"date-parts":[[2019,6,2]]},"reference":[{"volume-title":"In-design and signoff lithography physical analysis for 7\/5nm,\" in SPIE Advanced Lithography","year":"2017","author":"Tabery C.","key":"e_1_3_2_1_1_1","unstructured":"C. Tabery , Y. Zou , V. Arnoux , P. Raghavan , R.-h. Kim , M. C\u00f4t\u00e9 , L. Mattii , Y.-C. Lai , and P. Hurat , \" In-design and signoff lithography physical analysis for 7\/5nm,\" in SPIE Advanced Lithography , vol. 10147 , 2017 . C. Tabery, Y. Zou, V. Arnoux, P. Raghavan, R.-h. Kim, M. C\u00f4t\u00e9, L. Mattii, Y.-C. Lai, and P. Hurat, \"In-design and signoff lithography physical analysis for 7\/5nm,\" in SPIE Advanced Lithography, vol. 10147, 2017."},{"volume-title":"Imbalance aware lithography hotspot detection: a deep learning approach,\" JM3","author":"Yang H.","key":"e_1_3_2_1_2_1","unstructured":"H. Yang , L. Luo , J. Su , C. Lin , and B. Yu , \" Imbalance aware lithography hotspot detection: a deep learning approach,\" JM3 , vol. 16 , no. 3, 2017. H. Yang, L. Luo, J. Su, C. Lin, and B. Yu, \"Imbalance aware lithography hotspot detection: a deep learning approach,\" JM3, vol. 16, no. 3, 2017."},{"key":"e_1_3_2_1_3_1","doi-asserted-by":"publisher","DOI":"10.1145\/3287624.3287682"},{"key":"e_1_3_2_1_4_1","doi-asserted-by":"crossref","unstructured":"H. Yang J. Su Y. Zou Y. Ma B. Yu and E. F. Y. Young \"Layout hotspot detection with feature tensor generation and deep biased learning \" IEEE TCAD 2018. H. Yang J. Su Y. Zou Y. Ma B. Yu and E. F. Y. Young \"Layout hotspot detection with feature tensor generation and deep biased learning \" IEEE TCAD 2018.","DOI":"10.1145\/3061639.3062270"},{"key":"e_1_3_2_1_5_1","doi-asserted-by":"crossref","unstructured":"M. Shin and J.-H. Lee \"Accurate lithography hotspot detection using deep convolutional neural networks \" JM3 vol. 15 no. 4 2016. M. Shin and J.-H. Lee \"Accurate lithography hotspot detection using deep convolutional neural networks \" JM3 vol. 15 no. 4 2016.","DOI":"10.1117\/1.JMM.15.4.043507"},{"key":"e_1_3_2_1_6_1","doi-asserted-by":"publisher","DOI":"10.1145\/3287624.3288747"},{"key":"e_1_3_2_1_7_1","doi-asserted-by":"publisher","DOI":"10.1145\/3287624.3287684"},{"volume-title":"SOCC","year":"2017","author":"Yang H.","key":"e_1_3_2_1_8_1","unstructured":"H. Yang , Y. Lin , B. Yu , and E. F. Y. Young , \" Lithography hotspot detection : From shallow to deep learning,\" in Proc . SOCC , 2017 . H. Yang, Y. Lin, B. Yu, and E. F. Y. Young, \"Lithography hotspot detection: From shallow to deep learning,\" in Proc. SOCC, 2017."},{"volume-title":"Bridging the gap between layout pattern sampling and hotspot detection via batch active sampling,\" arXiv preprint arXiv:1807.06446","year":"2018","author":"Yang H.","key":"e_1_3_2_1_9_1","unstructured":"H. Yang , S. Li , C. Tabery , B. Lin , and B. Yu , \" Bridging the gap between layout pattern sampling and hotspot detection via batch active sampling,\" arXiv preprint arXiv:1807.06446 , 2018 . H. Yang, S. Li, C. Tabery, B. Lin, and B. Yu, \"Bridging the gap between layout pattern sampling and hotspot detection via batch active sampling,\" arXiv preprint arXiv:1807.06446, 2018."},{"volume-title":"Data efficient lithography modeling with transfer learning and active data selection,\" IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","year":"2018","author":"Lin Y.","key":"e_1_3_2_1_10_1","unstructured":"Y. Lin , M. Li , Y. Watanabe , T. Kimura , T. Matsunawa , S. Nojima , and D. Z. Pan , \" Data efficient lithography modeling with transfer learning and active data selection,\" IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems , 2018 . Y. Lin, M. Li, Y. Watanabe, T. Kimura, T. Matsunawa, S. Nojima, and D. Z. Pan, \"Data efficient lithography modeling with transfer learning and active data selection,\" IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018."},{"volume-title":"ICSICT","year":"2016","author":"Zhuang L.","key":"e_1_3_2_1_11_1","unstructured":"L. Zhuang , J. Xu , M. Tsai , Q. W. Liu , E. Yang , Y. Zhang , J. Sweis , C. Lai , and H. Ding , \" A novel methodology of process weak-point identification to accelerate process development and yield ramp-up,\" in Proc . ICSICT , 2016 . L. Zhuang, J. Xu, M. Tsai, Q. W. Liu, E. Yang, Y. Zhang, J. Sweis, C. Lai, and H. Ding, \"A novel methodology of process weak-point identification to accelerate process development and yield ramp-up,\" in Proc. ICSICT, 2016."},{"volume-title":"NIPS","year":"2014","author":"Goodfellow I.","key":"e_1_3_2_1_12_1","unstructured":"I. Goodfellow , J. Pouget-Abadie , M. Mirza , B. Xu , D. Warde-Farley , S. Ozair , A. Courville , and Y. Bengio , \" Generative adversarial nets,\" in Proc . NIPS , 2014 . I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, \"Generative adversarial nets,\" in Proc. NIPS, 2014."},{"volume-title":"NIPS","year":"2016","author":"Liu M.-Y.","key":"e_1_3_2_1_13_1","unstructured":"M.-Y. Liu and O. Tuzel , \" Coupled generative adversarial networks,\" in Proc . NIPS , 2016 . M.-Y. Liu and O. Tuzel, \"Coupled generative adversarial networks,\" in Proc. NIPS, 2016."},{"key":"e_1_3_2_1_14_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.244"},{"volume-title":"Conditional generative adversarial nets,\" arXiv preprint arXiv:1411.1784","year":"2014","author":"Mirza M.","key":"e_1_3_2_1_15_1","unstructured":"M. Mirza and S. Osindero , \" Conditional generative adversarial nets,\" arXiv preprint arXiv:1411.1784 , 2014 . M. Mirza and S. Osindero, \"Conditional generative adversarial nets,\" arXiv preprint arXiv:1411.1784, 2014."},{"key":"e_1_3_2_1_16_1","doi-asserted-by":"publisher","DOI":"10.1145\/3195970.3196056"},{"volume-title":"IEEE","year":"2018","author":"Geng H.","key":"e_1_3_2_1_17_1","unstructured":"H. Geng , H. Yang , B. Yu , X. Li , and X. Zeng , \" Sparse vlsi layout feature extraction: A dictionary learning approach,\" in 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) . IEEE , 2018 . H. Geng, H. Yang, B. Yu, X. Li, and X. Zeng, \"Sparse vlsi layout feature extraction: A dictionary learning approach,\" in 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE, 2018."},{"volume-title":"SOCC","year":"2017","author":"Liu J.","key":"e_1_3_2_1_18_1","unstructured":"J. Liu , Y. Ding , J. Yang , U. Schlichtmann , and Y. Shi , \" Generative adversarial network based scalable on-chip noise sensor placement,\" in Proc . SOCC , 2017 . J. Liu, Y. Ding, J. Yang, U. Schlichtmann, and Y. Shi, \"Generative adversarial network based scalable on-chip noise sensor placement,\" in Proc. SOCC, 2017."},{"volume-title":"ICLR","year":"2016","author":"Radford A.","key":"e_1_3_2_1_19_1","unstructured":"A. Radford , L. Metz , and S. Chintala , \" Unsupervised representation learning with deep convolutional generative adversarial networks,\" in Proc . ICLR , 2016 . A. Radford, L. Metz, and S. Chintala, \"Unsupervised representation learning with deep convolutional generative adversarial networks,\" in Proc. ICLR, 2016."},{"key":"e_1_3_2_1_20_1","doi-asserted-by":"publisher","DOI":"10.1145\/584091.584093"},{"key":"e_1_3_2_1_21_1","unstructured":"F. E. Gennari and Y.-C. Lai \"Topology design using squish patterns \" Sep. 9 2014 US Patent 8 832 621. F. E. Gennari and Y.-C. Lai \"Topology design using squish patterns \" Sep. 9 2014 US Patent 8 832 621."},{"volume-title":"Transforming auto-encoders,\" in Proc","year":"2011","author":"Hinton G. E.","key":"e_1_3_2_1_22_1","unstructured":"G. E. Hinton , A. Krizhevsky , and S. D. Wang , \" Transforming auto-encoders,\" in Proc . ICANN. Springer , 2011 . G. E. Hinton, A. Krizhevsky, and S. D. Wang, \"Transforming auto-encoders,\" in Proc. ICANN. Springer, 2011."},{"volume-title":"A guide to convolution arithmetic for deep learning,\" arXiv preprint arXiv:1603.07285","year":"2016","author":"Dumoulin V.","key":"e_1_3_2_1_23_1","unstructured":"V. Dumoulin and F. Visin , \" A guide to convolution arithmetic for deep learning,\" arXiv preprint arXiv:1603.07285 , 2016 . V. Dumoulin and F. Visin, \"A guide to convolution arithmetic for deep learning,\" arXiv preprint arXiv:1603.07285, 2016."},{"key":"e_1_3_2_1_24_1","doi-asserted-by":"publisher","DOI":"10.1145\/1866975.1866976"},{"volume-title":"OSDI","year":"2016","author":"Abadi M.","key":"e_1_3_2_1_25_1","unstructured":"M. Abadi , P. Barham , J. Chen , Z. Chen , A. Davis , J. Dean et al., \"TensorFlow: A system for large-scale machine learning,\" in Proc . OSDI , 2016 . M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean et al., \"TensorFlow: A system for large-scale machine learning,\" in Proc. OSDI, 2016."},{"key":"e_1_3_2_1_26_1","volume-title":"AISTATS","volume":"9","author":"Glorot X.","year":"2010","unstructured":"X. Glorot and Y. Bengio , \" Understanding the difficulty of training deep feedforward neural networks,\" in Proc . AISTATS , vol. 9 , 2010 . X. Glorot and Y. Bengio, \"Understanding the difficulty of training deep feedforward neural networks,\" in Proc. AISTATS, vol. 9, 2010."}],"event":{"name":"DAC '19: The 56th Annual Design Automation Conference 2019","sponsor":["SIGDA ACM Special Interest Group on Design Automation","IEEE-CEDA","SIGBED ACM Special Interest Group on Embedded Systems"],"location":"Las Vegas NV USA","acronym":"DAC '19"},"container-title":["Proceedings of the 56th Annual Design Automation Conference 2019"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3316781.3317795","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,6]],"date-time":"2023-01-06T03:44:27Z","timestamp":1672976667000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3316781.3317795"}},"subtitle":["Layout Pattern Generation with Transforming Convolutional Auto-Encoder"],"short-title":[],"issued":{"date-parts":[[2019,6,2]]},"references-count":26,"alternative-id":["10.1145\/3316781.3317795","10.1145\/3316781"],"URL":"https:\/\/doi.org\/10.1145\/3316781.3317795","relation":{},"subject":[],"published":{"date-parts":[[2019,6,2]]},"assertion":[{"value":"2019-06-02","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}