{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,8]],"date-time":"2024-09-08T09:16:12Z","timestamp":1725786972091},"publisher-location":"New York, NY, USA","reference-count":25,"publisher":"ACM","license":[{"start":{"date-parts":[[2019,6,2]],"date-time":"2019-06-02T00:00:00Z","timestamp":1559433600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.acm.org\/publications\/policies\/copyright_policy#Background"}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2019,6,2]]},"DOI":"10.1145\/3316781.3317742","type":"proceedings-article","created":{"date-parts":[[2019,5,23]],"date-time":"2019-05-23T18:07:13Z","timestamp":1558634833000},"page":"1-6","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":38,"title":["A Fault-Tolerant Neural Network Architecture"],"prefix":"10.1145","author":[{"given":"Tao","family":"Liu","sequence":"first","affiliation":[{"name":"Florida International University"}]},{"given":"Wujie","family":"Wen","sequence":"additional","affiliation":[{"name":"Florida International University"}]},{"given":"Lei","family":"Jiang","sequence":"additional","affiliation":[{"name":"Indiana University Bloomington"}]},{"given":"Yanzhi","family":"Wang","sequence":"additional","affiliation":[{"name":"Northeastern University"}]},{"given":"Chengmo","family":"Yang","sequence":"additional","affiliation":[{"name":"University of Delaware"}]},{"given":"Gang","family":"Quan","sequence":"additional","affiliation":[{"name":"Florida International University"}]}],"member":"320","published-online":{"date-parts":[[2019,6,2]]},"reference":[{"doi-asserted-by":"publisher","key":"e_1_3_2_1_1_1","DOI":"10.1109\/JPROC.2010.2070830"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_2_1","DOI":"10.1088\/0957-4484\/23\/7\/075201"},{"key":"e_1_3_2_1_3_1","volume-title":"IJCAI-99: Workshop on machine learning for information filtering.","author":"Berger Adam","year":"1999","unstructured":"Adam Berger . 1999 . Error-correcting output coding for text classification . In IJCAI-99: Workshop on machine learning for information filtering. Adam Berger. 1999. Error-correcting output coding for text classification. In IJCAI-99: Workshop on machine learning for information filtering."},{"key":"e_1_3_2_1_4_1","volume-title":"Short-term memory to long-term memory transition in a nanoscale memristor. ACS nano 5, 9","author":"Chang Ting","year":"2011","unstructured":"Ting Chang , Sung-Hyun Jo , and Wei Lu. 2011. Short-term memory to long-term memory transition in a nanoscale memristor. ACS nano 5, 9 ( 2011 ), 7669--7676. Ting Chang, Sung-Hyun Jo, and Wei Lu. 2011. Short-term memory to long-term memory transition in a nanoscale memristor. ACS nano 5, 9 (2011), 7669--7676."},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_5_1","DOI":"10.5555\/3130379.3130384"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_6_1","DOI":"10.1145\/2996864"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_7_1","DOI":"10.1109\/CVPR.2009.5206848"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_8_1","DOI":"10.1613\/jair.105"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_9_1","DOI":"10.1109\/HPCA.2018.00015"},{"key":"e_1_3_2_1_10_1","volume-title":"Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149","author":"Han Song","year":"2015","unstructured":"Song Han , Huizi Mao , and William J Dally . 2015. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149 ( 2015 ). Song Han, Huizi Mao, and William J Dally. 2015. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149 (2015)."},{"key":"e_1_3_2_1_11_1","volume-title":"Squeezenet: Alexnet-level accuracy with 50x fewer parameters and<","author":"Iandola Forrest N","year":"2016","unstructured":"Forrest N Iandola , Song Han , Matthew W Moskewicz , Khalid Ashraf , William J Dally , and Kurt Keutzer . 2016 . Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< ; 0.5 mb model size. arXiv preprint arXiv:1602.07360 (2016). Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt Keutzer. 2016. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size. arXiv preprint arXiv:1602.07360 (2016)."},{"volume-title":"Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, 648--652","year":"2004","unstructured":"Yan-huang Jiang, Qiang-li Zhao, and Xue-jun Yang. 2004 . A general coding method for error-correcting output codes . In Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, 648--652 . Yan-huang Jiang, Qiang-li Zhao, and Xue-jun Yang. 2004. A general coding method for error-correcting output codes. In Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, 648--652.","key":"e_1_3_2_1_12_1"},{"unstructured":"Yann LeCun John S Denker and Sara A Solla. 1990. Optimal brain damage. In Advances in neural information processing systems. 598--605. Yann LeCun John S Denker and Sara A Solla. 1990. Optimal brain damage. In Advances in neural information processing systems. 598--605.","key":"e_1_3_2_1_13_1"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_14_1","DOI":"10.1145\/3061639.3062310"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_15_1","DOI":"10.5555\/3201607.3201740"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_16_1","DOI":"10.5555\/3199700.3199760"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_17_1","DOI":"10.1088\/0957-4484\/22\/9\/095702"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_18_1","DOI":"10.1109\/ISCA.2016.12"},{"key":"e_1_3_2_1_19_1","volume-title":"Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al.","author":"Silver David","year":"2016","unstructured":"David Silver , Aja Huang , Chris J Maddison , Arthur Guez , Laurent Sifre , George Van Den Driessche , Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. 2016 . Mastering the game of Go with deep neural networks and tree search. Nature 529, 7587 (2016), 484--489. David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural networks and tree search. Nature 529, 7587 (2016), 484--489."},{"volume-title":"Best practices for convolutional neural networks applied to visual document analysis. In null","author":"Simard Patrice Y","unstructured":"Patrice Y Simard , Dave Steinkraus , and John C Platt . 2003. Best practices for convolutional neural networks applied to visual document analysis. In null . IEEE , 958. Patrice Y Simard, Dave Steinkraus, and John C Platt. 2003. Best practices for convolutional neural networks applied to visual document analysis. In null. IEEE, 958.","key":"e_1_3_2_1_20_1"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_21_1","DOI":"10.1109\/HPCA.2017.55"},{"key":"e_1_3_2_1_22_1","volume-title":"An Overview of Deep Learning. AITP 2016","author":"Szegedy Christian","year":"2016","unstructured":"Christian Szegedy . 2016 . An Overview of Deep Learning. AITP 2016 (2016). Christian Szegedy. 2016. An Overview of Deep Learning. AITP 2016 (2016)."},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_23_1","DOI":"10.5555\/3199700.3199772"},{"unstructured":"Jason Yosinski Jeff Clune Yoshua Bengio and Hod Lipson. 2014. How transferable are features in deep neural networks?. In Advances in neural information processing systems. 3320--3328. Jason Yosinski Jeff Clune Yoshua Bengio and Hod Lipson. 2014. How transferable are features in deep neural networks?. In Advances in neural information processing systems. 3320--3328.","key":"e_1_3_2_1_24_1"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_25_1","DOI":"10.1007\/s11263-015-0839-4"}],"event":{"sponsor":["SIGDA ACM Special Interest Group on Design Automation","IEEE-CEDA","SIGBED ACM Special Interest Group on Embedded Systems"],"acronym":"DAC '19","name":"DAC '19: The 56th Annual Design Automation Conference 2019","location":"Las Vegas NV USA"},"container-title":["Proceedings of the 56th Annual Design Automation Conference 2019"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3316781.3317742","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,6]],"date-time":"2023-01-06T03:33:50Z","timestamp":1672976030000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3316781.3317742"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,6,2]]},"references-count":25,"alternative-id":["10.1145\/3316781.3317742","10.1145\/3316781"],"URL":"https:\/\/doi.org\/10.1145\/3316781.3317742","relation":{},"subject":[],"published":{"date-parts":[[2019,6,2]]},"assertion":[{"value":"2019-06-02","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}