{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T00:55:28Z","timestamp":1740099328938,"version":"3.37.3"},"publisher-location":"New York, NY, USA","reference-count":32,"publisher":"ACM","license":[{"start":{"date-parts":[[2020,5,13]],"date-time":"2020-05-13T00:00:00Z","timestamp":1589328000000},"content-version":"vor","delay-in-days":366,"URL":"http:\/\/www.acm.org\/publications\/policies\/copyright_policy#Background"}],"funder":[{"DOI":"10.13039\/100000001","name":"National Science Foundation","doi-asserted-by":"publisher","award":["1725456,1744082"],"id":[{"id":"10.13039\/100000001","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100011030","name":"U.S. Department of Energy","doi-asserted-by":"publisher","award":["SC0017030"],"id":[{"id":"10.13039\/100011030","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2019,5,13]]},"DOI":"10.1145\/3299874.3319482","type":"proceedings-article","created":{"date-parts":[[2019,5,16]],"date-time":"2019-05-16T12:10:25Z","timestamp":1558008625000},"page":"423-428","update-policy":"https:\/\/doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":4,"title":["Efficient Process-in-Memory Architecture Design for Unsupervised GAN-based Deep Learning using ReRAM"],"prefix":"10.1145","author":[{"given":"Fan","family":"Chen","sequence":"first","affiliation":[{"name":"Duke University, Durham, NC, USA"}]},{"given":"Linghao","family":"Song","sequence":"additional","affiliation":[{"name":"Duke University, Durham, NC, USA"}]},{"given":"Hai 'Helen'","family":"Li","sequence":"additional","affiliation":[{"name":"Duke University, Durham, NC, USA"}]}],"member":"320","published-online":{"date-parts":[[2019,5,13]]},"reference":[{"key":"e_1_3_2_1_1_1","doi-asserted-by":"publisher","DOI":"10.1109\/IEDM.2013.6724732"},{"key":"e_1_3_2_1_2_1","doi-asserted-by":"publisher","DOI":"10.5555\/3201607.3201645"},{"key":"e_1_3_2_1_3_1","doi-asserted-by":"publisher","DOI":"10.1145\/3316781.3317936"},{"key":"e_1_3_2_1_4_1","doi-asserted-by":"publisher","DOI":"10.1145\/2541940.2541967"},{"key":"e_1_3_2_1_5_1","volume-title":"Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks","author":"Chen Y.","year":"2017","unstructured":"Y. Chen, T. Krishna, J. S. Emer, and V. Sze. 2017. Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks. IEEE Journal of Solid-State Circuits (2017)."},{"key":"e_1_3_2_1_6_1","volume-title":"Andrea Fantini, Guido Groeseneken, Dirk J Wouters, and Malgorzata Jurczak.","author":"Chen Yang Yin","year":"2013","unstructured":"Yang Yin Chen, Ludovic Goux, Sergiu Clima, Bogdan Govoreanu, Robin Degraeve, Gouri Sankar Kar, Andrea Fantini, Guido Groeseneken, Dirk J Wouters, and Malgorzata Jurczak. 2013. Endurance\/retention trade-off on HfO2\/metal cap 1T1R bipolar RRAM. IEEE Transactions on electron devices (2013)."},{"key":"e_1_3_2_1_7_1","doi-asserted-by":"publisher","DOI":"10.1109\/ISCA.2016.13"},{"key":"e_1_3_2_1_8_1","volume-title":"CAN: Creative Adversarial Networks, Generating \"Art\" by Learning About Styles and Deviating from Style Norms. arXiv e-prints","author":"Elgammal Ahmed","year":"2017","unstructured":"Ahmed Elgammal, Bingchen Liu, Mohamed Elhoseiny, and Marian Mazzone. 2017. CAN: Creative Adversarial Networks, Generating \"Art\" by Learning About Styles and Deviating from Style Norms. arXiv e-prints (2017), arXiv:1706.07068."},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"publisher","unstructured":"M. Everingham S. M. A. Eslami L. Van Gool C. K. I. Williams J. Winn and A. Zisserman. 2015. The Pascal Visual Object Classes Challenge: A Retrospective. International Journal of Computer Vision (2015). 10.1007\/s11263-014-0733-5","DOI":"10.1007\/s11263-014-0733-5"},{"key":"e_1_3_2_1_10_1","volume-title":"Automation & Test in Europe Conference & Exhibition (DATE).","author":"Fan Zichen","year":"2019","unstructured":"Zichen Fan, Ziru Li, Bing Li, Yiran Chen, and Helen Hai Li. 2019. RED: A ReRAM-based Deconvolution Accelerator. In 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE)."},{"key":"e_1_3_2_1_11_1","doi-asserted-by":"publisher","DOI":"10.5555\/2969033.2969125"},{"key":"e_1_3_2_1_12_1","volume-title":"Improved Training of Wasserstein GANs. arXiv e-prints","author":"Gulrajani Ishaan","year":"2017","unstructured":"Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. 2017. Improved Training of Wasserstein GANs. arXiv e-prints (2017), arXiv:1704.00028."},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"publisher","DOI":"10.5555\/3305381.3305573"},{"key":"e_1_3_2_1_14_1","unstructured":"A. Krizhevsky and G. Hinton. 2009. Learning multiple layers of features from tiny images. In Technical report University of Toronto."},{"key":"e_1_3_2_1_15_1","volume-title":"Proceedings of the 56th annual design automation conference. http:\/\/yann.lecun.com\/exdb\/mnist\/","author":"LeCun Y.","year":"1998","unstructured":"Y. LeCun. 1998. Proceedings of the 56th annual design automation conference. http:\/\/yann.lecun.com\/exdb\/mnist\/"},{"key":"e_1_3_2_1_16_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2013.372"},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"publisher","DOI":"10.1145\/2744769.2744783"},{"key":"e_1_3_2_1_18_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.425"},{"key":"e_1_3_2_1_19_1","doi-asserted-by":"publisher","DOI":"10.1145\/1837274.1837495"},{"key":"e_1_3_2_1_20_1","volume-title":"Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. CoRR","author":"Radford Alec","year":"2016","unstructured":"Alec Radford, Luke Metz, and Soumith Chintala. 2016. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. CoRR, Vol. abs\/1511.06434 (2016)."},{"key":"e_1_3_2_1_21_1","unstructured":"Tim Salimans Ian Goodfellow Wojciech Zaremba Vicki Cheung Alec Radford and Xi Chen. 2016. Improved Techniques for Training GANs. ArXiv e-prints (2016) arXiv: 1606.03498."},{"key":"e_1_3_2_1_22_1","doi-asserted-by":"publisher","DOI":"10.1109\/ISCA.2016.12"},{"volume-title":"PipeLayer: A Pipelined ReRAM-Based Accelerator for Deep Learning. In 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA).","author":"Song L.","key":"e_1_3_2_1_23_1","unstructured":"L. Song, X. Qian, H. Li, and Y. Chen. 2017. PipeLayer: A Pipelined ReRAM-Based Accelerator for Deep Learning. In 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA)."},{"volume-title":"Towards Efficient Microarchitectural Design for Accelerating Unsupervised GAN-Based Deep Learning. In 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA).","author":"Song M.","key":"e_1_3_2_1_24_1","unstructured":"M. Song, J. Zhang, H. Chen, and T. Li. 2018. Towards Efficient Microarchitectural Design for Accelerating Unsupervised GAN-Based Deep Learning. In 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA)."},{"key":"e_1_3_2_1_25_1","volume-title":"Hernan Aguirre, and Kiyoshi Tanaka.","author":"Tan Wei Ren","year":"2017","unstructured":"Wei Ren Tan, Chee Seng Chan, Hernan Aguirre, and Kiyoshi Tanaka. 2017. ArtGAN: Artwork Synthesis with Conditional Categorical GANs. ArXiv e-prints, (Feb. 2017), arXiv: 1702.03410."},{"key":"e_1_3_2_1_26_1","doi-asserted-by":"publisher","DOI":"10.5555\/3157096.3157106"},{"key":"e_1_3_2_1_27_1","doi-asserted-by":"publisher","unstructured":"Dawen Xu Kaijie Tu Ying Wang Cheng Liu Bingsheng He and Huawei Li. 2018. FCN-engine: Accelerating Deconvolutional Layers in Classic CNN Processors. In ICCAD. 10.1145\/3240765.3240810","DOI":"10.1145\/3240765.3240810"},{"key":"e_1_3_2_1_28_1","doi-asserted-by":"crossref","unstructured":"A. Yazdanbakhsh M. Brzozowski B. Khaleghi S. Ghodrati K. Samadi N. Kim and H. Esmaeilzadeh. 2018. FlexiGAN: An End-to-End Solution for FPGA Acceleration of Generative Adversarial Networks. In 2018 IEEE 26th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE Computer Society Los Alamitos CA USA 65--72.","DOI":"10.1109\/FCCM.2018.00019"},{"key":"e_1_3_2_1_29_1","doi-asserted-by":"publisher","DOI":"10.1109\/ISCA.2018.00060"},{"key":"e_1_3_2_1_30_1","volume-title":"Alexander G. Schwing, Mark Hasegawa-Johnson, and Minh N. Do.","author":"Yeh Raymond A.","year":"2016","unstructured":"Raymond A. Yeh, Chen Chen, Teck Yian Lim, Alexander G. Schwing, Mark Hasegawa-Johnson, and Minh N. Do. 2016. Semantic Image Inpainting with Deep Generative Models. arXiv e-prints (2016), arXiv:1607.07539."},{"key":"e_1_3_2_1_31_1","volume-title":"LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop. arXiv e-prints, (2015) arXiv: 1506.03365.","author":"Yu Fisher","year":"2015","unstructured":"Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. 2015. LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop. arXiv e-prints, (2015) arXiv: 1506.03365."},{"key":"e_1_3_2_1_32_1","unstructured":"Xinyu Zhang Srinjoy Das Ojash Neopane and Ken Kreutz-Delgado. 2017. A Design Methodology for Efficient Implementation of Deconvolutional Neural Networks on an FPGA. ArXiv e-prints (2017) arXiv:1705.02583."}],"event":{"name":"GLSVLSI '19: Great Lakes Symposium on VLSI 2019","sponsor":["SIGDA ACM Special Interest Group on Design Automation"],"location":"Tysons Corner VA USA","acronym":"GLSVLSI '19"},"container-title":["Proceedings of the 2019 Great Lakes Symposium on VLSI"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3299874.3319482","content-type":"application\/pdf","content-version":"vor","intended-application":"syndication"},{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3299874.3319482","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,10]],"date-time":"2024-06-10T16:43:37Z","timestamp":1718037817000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3299874.3319482"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,5,13]]},"references-count":32,"alternative-id":["10.1145\/3299874.3319482","10.1145\/3299874"],"URL":"https:\/\/doi.org\/10.1145\/3299874.3319482","relation":{},"subject":[],"published":{"date-parts":[[2019,5,13]]},"assertion":[{"value":"2019-05-13","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}