{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T20:47:56Z","timestamp":1730321276513,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":26,"publisher":"ACM","funder":[{"DOI":"10.13039\/501100007601","name":"Horizon 2020 Framework Programme","doi-asserted-by":"publisher","award":["825619"],"id":[{"id":"10.13039\/501100007601","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2019,11,12]]},"DOI":"10.1145\/3297662.3365816","type":"proceedings-article","created":{"date-parts":[[2020,1,11]],"date-time":"2020-01-11T06:07:56Z","timestamp":1578722876000},"page":"103-110","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":5,"title":["Visual analytics for exploring air quality data in an AI-enhanced IoT environment"],"prefix":"10.1145","author":[{"given":"Ilias","family":"Kalamaras","sequence":"first","affiliation":[{"name":"Information Technologies Institute - Centre for Research and Technology, Hellas"}]},{"given":"Ioannis","family":"Xygonakis","sequence":"additional","affiliation":[{"name":"Information Technologies Institute - Centre for Research and Technology, Hellas"}]},{"given":"Konstantinos","family":"Glykos","sequence":"additional","affiliation":[{"name":"Information Technologies Institute - Centre for Research and Technology, Hellas"}]},{"given":"Sigmund","family":"Akselsen","sequence":"additional","affiliation":[{"name":"Telenor Group"}]},{"given":"Arne","family":"Munch-Ellingsen","sequence":"additional","affiliation":[{"name":"Telenor Group"}]},{"given":"Hai Thanh","family":"Nguyen","sequence":"additional","affiliation":[{"name":"Telenor Group & Norwegian University of Science and Technology"}]},{"given":"Andreas Jacobsen","family":"Lepperod","sequence":"additional","affiliation":[{"name":"Norwegian University of Science and Technology"}]},{"given":"Kerstin","family":"Bach","sequence":"additional","affiliation":[{"name":"Norwegian University of Science and Technology"}]},{"given":"Konstantinos","family":"Votis","sequence":"additional","affiliation":[{"name":"Information Technologies Institute - Centre for Research and Technology, Hellas"}]},{"given":"Dimitrios","family":"Tzovaras","sequence":"additional","affiliation":[{"name":"Information Technologies Institute - Centre for Research and Technology, Hellas"}]}],"member":"320","published-online":{"date-parts":[[2020,1,10]]},"reference":[{"key":"e_1_3_2_1_1_1","unstructured":"September 2019. European Project AI4EU. https:\/\/www.ai4eu.eu\/. September 2019. European Project AI4EU. https:\/\/www.ai4eu.eu\/."},{"key":"e_1_3_2_1_2_1","unstructured":"September 2019. Orange - Data Mining Fruitful and Fun. https:\/\/orange.biolab.si\/. September 2019. Orange - Data Mining Fruitful and Fun. https:\/\/orange.biolab.si\/."},{"key":"e_1_3_2_1_3_1","unstructured":"September 2019. Vega - A Visualization Grammar. https:\/\/vega.github.io\/vega\/. September 2019. Vega - A Visualization Grammar. https:\/\/vega.github.io\/vega\/."},{"key":"e_1_3_2_1_4_1","volume-title":"1st International Workshop on Evaluation and Benchmarking of Human-Centered AI Systems (EBHAIS-2019)","author":"Akselsen Sigmund","year":"2019","unstructured":"Sigmund Akselsen , Pontus Edvard Aurdal , Kerstin Bach , Jo\u00e3o Paulo Costeira , Ilias Kalamaras , Andreas Jacobsen Lepper\u00f8d , Pedro Lima , Ieva Martinkenaite , Ole Jakob Mengshoel , Arne Munch-Ellingsen , Hai Thanh Nguyen , Dimitrios Tzovaras , Tiago Veiga , Konstantinos Votis , Leendert Wienhofen , Weiqing Zhang , and Pinar \u00d8zturk . 2019 . On the need for explanations, visualisations and measurements in data-driven air quality monitoring and forecasting . In 1st International Workshop on Evaluation and Benchmarking of Human-Centered AI Systems (EBHAIS-2019) . Sigmund Akselsen, Pontus Edvard Aurdal, Kerstin Bach, Jo\u00e3o Paulo Costeira, Ilias Kalamaras, Andreas Jacobsen Lepper\u00f8d, Pedro Lima, Ieva Martinkenaite, Ole Jakob Mengshoel, Arne Munch-Ellingsen, Hai Thanh Nguyen, Dimitrios Tzovaras, Tiago Veiga, Konstantinos Votis, Leendert Wienhofen, Weiqing Zhang, and Pinar \u00d8zturk. 2019. On the need for explanations, visualisations and measurements in data-driven air quality monitoring and forecasting. In 1st International Workshop on Evaluation and Benchmarking of Human-Centered AI Systems (EBHAIS-2019)."},{"key":"e_1_3_2_1_5_1","unstructured":"Pontus Edvard Aurdal. 2019. VisualBox -- A Generic Data Integration and Visualization Tool. Master's Thesis. The Arctic Univeristy of Norway (UiT) Troms\u00f8 Norway. Pontus Edvard Aurdal. 2019. VisualBox -- A Generic Data Integration and Visualization Tool. Master's Thesis. The Arctic Univeristy of Norway (UiT) Troms\u00f8 Norway."},{"key":"e_1_3_2_1_6_1","volume-title":"Interpreting and explaining deep neural networks for classification of audio signals. arXiv preprint arXiv:1807.03418","author":"Becker S\u00f6ren","year":"2018","unstructured":"S\u00f6ren Becker , Marcel Ackermann , Sebastian Lapuschkin , Klaus-Robert M\u00fcller , and Wojciech Samek . 2018. Interpreting and explaining deep neural networks for classification of audio signals. arXiv preprint arXiv:1807.03418 ( 2018 ). S\u00f6ren Becker, Marcel Ackermann, Sebastian Lapuschkin, Klaus-Robert M\u00fcller, and Wojciech Samek. 2018. Interpreting and explaining deep neural networks for classification of audio signals. arXiv preprint arXiv:1807.03418 (2018)."},{"key":"e_1_3_2_1_7_1","doi-asserted-by":"publisher","DOI":"10.1186\/s13640-019-0443-6"},{"key":"e_1_3_2_1_8_1","first-page":"4","article-title":"Visual exploration of air quality data with a time-correlation-partitioning tree based on information theory","volume":"9","author":"Guo Fangzhou","year":"2019","unstructured":"Fangzhou Guo , Tianlong Gu , Wei Chen , Feiran Wu , Qi Wang , Lei Shi , and Huamin Qu . 2019 . Visual exploration of air quality data with a time-correlation-partitioning tree based on information theory . ACM Transactions on Interactive Intelligent Systems (TiiS) 9 , 1 (2019), 4 . Fangzhou Guo, Tianlong Gu, Wei Chen, Feiran Wu, Qi Wang, Lei Shi, and Huamin Qu. 2019. Visual exploration of air quality data with a time-correlation-partitioning tree based on information theory. ACM Transactions on Interactive Intelligent Systems (TiiS) 9, 1 (2019), 4.","journal-title":"ACM Transactions on Interactive Intelligent Systems (TiiS)"},{"key":"e_1_3_2_1_9_1","volume-title":"Visual analytics in deep learning: An interrogative survey for the next frontiers","author":"Hohman Fred Matthew","year":"2018","unstructured":"Fred Matthew Hohman , Minsuk Kahng , Robert Pienta , and Duen Horng Chau . 2018. Visual analytics in deep learning: An interrogative survey for the next frontiers . IEEE transactions on visualization and computer graphics ( 2018 ). Fred Matthew Hohman, Minsuk Kahng, Robert Pienta, and Duen Horng Chau. 2018. Visual analytics in deep learning: An interrogative survey for the next frontiers. IEEE transactions on visualization and computer graphics (2018)."},{"key":"e_1_3_2_1_10_1","volume-title":"ACTIVIS: Visual exploration of industry-scale deep neural network models","author":"Kahng Minsuk","year":"2017","unstructured":"Minsuk Kahng , Pierre Y Andrews , Aditya Kalro , and Duen Horng Polo Chau . 2017 . ACTIVIS: Visual exploration of industry-scale deep neural network models . IEEE transactions on visualization and computer graphics 24, 1 (2017), 88--97. Minsuk Kahng, Pierre Y Andrews, Aditya Kalro, and Duen Horng Polo Chau. 2017. ACTIVIS: Visual exploration of industry-scale deep neural network models. IEEE transactions on visualization and computer graphics 24, 1 (2017), 88--97."},{"volume-title":"Air Quality Prediction with Machine Learning. Master's Thesis","author":"Lepper\u00f8d Andreas Jacobsen","key":"e_1_3_2_1_11_1","unstructured":"Andreas Jacobsen Lepper\u00f8d . 2019. Air Quality Prediction with Machine Learning. Master's Thesis . Norwegian University of Science and Technology (NTNU) , Trondheim, Norway . Andreas Jacobsen Lepper\u00f8d. 2019. Air Quality Prediction with Machine Learning. Master's Thesis. Norwegian University of Science and Technology (NTNU), Trondheim, Norway."},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.3390\/atmos7030035"},{"key":"e_1_3_2_1_13_1","volume-title":"Towards better analysis of deep convolutional neural networks","author":"Liu Mengchen","year":"2016","unstructured":"Mengchen Liu , Jiaxin Shi , Zhen Li , Chongxuan Li , Jun Zhu , and Shixia Liu . 2016. Towards better analysis of deep convolutional neural networks . IEEE transactions on visualization and computer graphics 23, 1 ( 2016 ), 91--100. Mengchen Liu, Jiaxin Shi, Zhen Li, Chongxuan Li, Jun Zhu, and Shixia Liu. 2016. Towards better analysis of deep convolutional neural networks. IEEE transactions on visualization and computer graphics 23, 1 (2016), 91--100."},{"key":"e_1_3_2_1_14_1","doi-asserted-by":"publisher","DOI":"10.3390\/atmos8080148"},{"key":"e_1_3_2_1_15_1","volume-title":"Consistent individualized feature attribution for tree ensembles. arXiv preprint arXiv:1802.03888","author":"Lundberg Scott M","year":"2018","unstructured":"Scott M Lundberg , Gabriel G Erion , and Su-In Lee . 2018. Consistent individualized feature attribution for tree ensembles. arXiv preprint arXiv:1802.03888 ( 2018 ). Scott M Lundberg, Gabriel G Erion, and Su-In Lee. 2018. Consistent individualized feature attribution for tree ensembles. arXiv preprint arXiv:1802.03888 (2018)."},{"key":"e_1_3_2_1_16_1","first-page":"I","article-title":"A Unified Approach to Interpreting Model Predictions","volume":"30","author":"Lundberg Scott M","year":"2017","unstructured":"Scott M Lundberg and Su-In Lee . 2017 . A Unified Approach to Interpreting Model Predictions . In Advances in Neural Information Processing Systems 30 , I . Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.). Curran Associates, Inc., 4765--4774. http:\/\/papers.nips.cc\/paper\/7062-a-unified-approach-to-interpreting-model-predictions.pdf Scott M Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting Model Predictions. In Advances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.). Curran Associates, Inc., 4765--4774. http:\/\/papers.nips.cc\/paper\/7062-a-unified-approach-to-interpreting-model-predictions.pdf","journal-title":"Advances in Neural Information Processing Systems"},{"key":"e_1_3_2_1_17_1","volume-title":"Shu-Fang Newman, Jerry Kim, et al.","author":"Lundberg Scott M","year":"2018","unstructured":"Scott M Lundberg , Bala Nair , Monica S Vavilala , Mayumi Horibe , Michael J Eisses , Trevor Adams , David E Liston , Daniel King-Wai Low , Shu-Fang Newman, Jerry Kim, et al. 2018 . Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nature biomedical engineering 2, 10 (2018), 749. Scott M Lundberg, Bala Nair, Monica S Vavilala, Mayumi Horibe, Michael J Eisses, Trevor Adams, David E Liston, Daniel King-Wai Low, Shu-Fang Newman, Jerry Kim, et al. 2018. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nature biomedical engineering 2, 10 (2018), 749."},{"key":"e_1_3_2_1_18_1","doi-asserted-by":"publisher","DOI":"10.1109\/VAST.2017.8585721"},{"key":"e_1_3_2_1_19_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.dsp.2017.10.011"},{"key":"e_1_3_2_1_20_1","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2007.70523"},{"key":"e_1_3_2_1_21_1","doi-asserted-by":"publisher","DOI":"10.1145\/2939672.2939778"},{"key":"e_1_3_2_1_22_1","volume-title":"Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models. arXiv preprint arXiv:1708.08296","author":"Samek Wojciech","year":"2017","unstructured":"Wojciech Samek , Thomas Wiegand , and Klaus-Robert M\u00fcller . 2017. Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models. arXiv preprint arXiv:1708.08296 ( 2017 ). Wojciech Samek, Thomas Wiegand, and Klaus-Robert M\u00fcller. 2017. Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models. arXiv preprint arXiv:1708.08296 (2017)."},{"key":"e_1_3_2_1_23_1","volume-title":"Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034","author":"Simonyan Karen","year":"2013","unstructured":"Karen Simonyan , Andrea Vedaldi , and Andrew Zisserman . 2013. Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034 ( 2013 ). Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2013. Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034 (2013)."},{"key":"e_1_3_2_1_24_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jneumeth.2016.10.008"},{"key":"e_1_3_2_1_25_1","doi-asserted-by":"publisher","DOI":"10.5555\/3305890.3306024"},{"key":"e_1_3_2_1_26_1","volume-title":"Visual analytics for spatial clusters of air-quality data","author":"Zhou Zhiguang","year":"2017","unstructured":"Zhiguang Zhou , Zhifei Ye , Yanan Liu , Fang Liu , Yubo Tao , and Weihua Su. 2017. Visual analytics for spatial clusters of air-quality data . IEEE computer graphics and applications 37, 5 ( 2017 ), 98--105. Zhiguang Zhou, Zhifei Ye, Yanan Liu, Fang Liu, Yubo Tao, and Weihua Su. 2017. Visual analytics for spatial clusters of air-quality data. IEEE computer graphics and applications 37, 5 (2017), 98--105."}],"event":{"name":"MEDES '19: 11th International Conference on Management of Digital EcoSystems","sponsor":["SIGAPP ACM Special Interest Group on Applied Computing"],"location":"Limassol Cyprus","acronym":"MEDES '19"},"container-title":["Proceedings of the 11th International Conference on Management of Digital EcoSystems"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3297662.3365816","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,13]],"date-time":"2023-01-13T07:11:46Z","timestamp":1673593906000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3297662.3365816"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,11,12]]},"references-count":26,"alternative-id":["10.1145\/3297662.3365816","10.1145\/3297662"],"URL":"https:\/\/doi.org\/10.1145\/3297662.3365816","relation":{},"subject":[],"published":{"date-parts":[[2019,11,12]]},"assertion":[{"value":"2020-01-10","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}