{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,4]],"date-time":"2025-04-04T13:25:23Z","timestamp":1743773123543,"version":"3.37.3"},"reference-count":64,"publisher":"Association for Computing Machinery (ACM)","issue":"3","license":[{"start":{"date-parts":[[2019,6,7]],"date-time":"2019-06-07T00:00:00Z","timestamp":1559865600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.acm.org\/publications\/policies\/copyright_policy#Background"}],"funder":[{"name":"NSF Award","award":["1717320"]},{"DOI":"10.13039\/100004675","name":"Autodesk","doi-asserted-by":"crossref","id":[{"id":"10.13039\/100004675","id-type":"DOI","asserted-by":"crossref"}]},{"name":"NSF Graduate Research Fellowship"},{"name":"Adobe"},{"name":"Facebook"},{"name":"Packard Fellowship"}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":["ACM Trans. Graph."],"published-print":{"date-parts":[[2019,6,30]]},"abstract":"\n This article describes a method for efficiently computing parallel transport of tangent vectors on curved surfaces, or more generally, any vector-valued data on a curved manifold. More precisely, it extends a vector field defined over any region to the rest of the domain via parallel transport along shortest geodesics. This basic operation enables fast, robust algorithms for extrapolating level set velocities, inverting the exponential map, computing geometric medians and Karcher\/Fr\u00e9chet means of arbitrary distributions, constructing centroidal Voronoi diagrams, and finding consistently ordered landmarks. Rather than evaluate parallel transport by explicitly tracing geodesics, we show that it can be computed via a short-time heat flow involving the\n connection Laplacian<\/jats:italic>\n . As a result, transport can be achieved by solving three prefactored linear systems, each akin to a standard Poisson problem. To implement the method, we need only a discrete connection Laplacian, which we describe for a variety of geometric data structures (point clouds, polygon meshes, etc.). We also study the numerical behavior of our method, showing empirically that it converges under refinement, and augment the construction of intrinsic Delaunay triangulations so that they can be used in the context of tangent vector field processing.\n <\/jats:p>","DOI":"10.1145\/3243651","type":"journal-article","created":{"date-parts":[[2019,6,10]],"date-time":"2019-06-10T12:10:51Z","timestamp":1560168651000},"page":"1-19","update-policy":"https:\/\/doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":60,"title":["The Vector Heat Method"],"prefix":"10.1145","volume":"38","author":[{"given":"Nicholas","family":"Sharp","sequence":"first","affiliation":[{"name":"Carnegie Mellon University, Pittsburgh, PA"}]},{"given":"Yousuf","family":"Soliman","sequence":"additional","affiliation":[{"name":"Carnegie Mellon University, Pittsburgh, PA"}]},{"given":"Keenan","family":"Crane","sequence":"additional","affiliation":[{"name":"Carnegie Mellon University, Pittsburgh, PA"}]}],"member":"320","published-online":{"date-parts":[[2019,6,7]]},"reference":[{"key":"e_1_2_2_1_1","doi-asserted-by":"publisher","DOI":"10.1006\/jcph.1998.6090"},{"key":"e_1_2_2_2_1","doi-asserted-by":"publisher","DOI":"10.1145\/2010324.1964997"},{"key":"e_1_2_2_3_1","doi-asserted-by":"publisher","DOI":"10.1090\/mcom\/3158"},{"key":"e_1_2_2_4_1","doi-asserted-by":"publisher","DOI":"10.1145\/2723158"},{"key":"e_1_2_2_5_1","doi-asserted-by":"publisher","DOI":"10.1111\/cgf.12611"},{"key":"e_1_2_2_6_1","doi-asserted-by":"crossref","unstructured":"N. Berline E. Getzler and M. Vergne. 1992. Heat Kernels and Dirac Operators. Springer. N. Berline E. Getzler and M. Vergne. 1992. Heat Kernels and Dirac Operators. Springer.","DOI":"10.1007\/978-3-642-58088-8"},{"key":"e_1_2_2_7_1","doi-asserted-by":"publisher","DOI":"10.5555\/1341391.1341394"},{"key":"e_1_2_2_8_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2014.491"},{"key":"e_1_2_2_9_1","doi-asserted-by":"publisher","DOI":"10.1111\/cgf.12014"},{"key":"e_1_2_2_10_1","doi-asserted-by":"publisher","DOI":"10.1145\/1278780.1278807"},{"key":"e_1_2_2_11_1","unstructured":"A. Brun. 2007. Manifolds in Image Science and Visualization. Ph.D. Dissertation. Institutionen f\u00f6r Medicinsk Teknik. A. Brun. 2007. Manifolds in Image Science and Visualization. Ph.D. Dissertation. Institutionen f\u00f6r Medicinsk Teknik."},{"key":"e_1_2_2_12_1","doi-asserted-by":"publisher","DOI":"10.1145\/502122.502124"},{"volume":"10502","volume-title":"Discrete Geometry for Computer Imagery. Lecture Notes in Computer Science","author":"Caissard T.","key":"e_1_2_2_13_1"},{"volume-title":"Proceedings of the 6th Annual Symposium on Computational Geometry (SCG\u201990)","author":"Chen J.","key":"e_1_2_2_14_1"},{"key":"e_1_2_2_15_1","doi-asserted-by":"publisher","DOI":"10.1145\/1391989.1391995"},{"volume-title":"Proceedings of ACM SIGGRAPH 2013 Courses (SIGGRAPH\u201913)","author":"Crane K.","key":"e_1_2_2_16_1"},{"key":"e_1_2_2_17_1","doi-asserted-by":"publisher","DOI":"10.1111\/j.1467-8659.2010.01761.x"},{"key":"e_1_2_2_18_1","doi-asserted-by":"publisher","DOI":"10.1145\/2516971.2516977"},{"key":"e_1_2_2_19_1","doi-asserted-by":"publisher","DOI":"10.1145\/992200.992206"},{"key":"e_1_2_2_20_1","doi-asserted-by":"publisher","DOI":"10.1145\/2897824.2925880"},{"volume-title":"Proceedings of ACM SIGGRAPH 2006 Courses (SIGGRAPH\u201906)","author":"Desbrun M.","key":"e_1_2_2_21_1"},{"key":"e_1_2_2_22_1","doi-asserted-by":"publisher","DOI":"10.1137\/S1064827501391576"},{"key":"e_1_2_2_23_1","doi-asserted-by":"crossref","unstructured":"N. El Karoui and H. Wu. 2015. Graph connection Laplacian and random matrices with random blocks. Inf. Inference 4 1 (03 2015) 1--44. N. El Karoui and H. Wu. 2015. Graph connection Laplacian and random matrices with random blocks. Inf. Inference 4 1 (03 2015) 1--44.","DOI":"10.1093\/imaiai\/iav001"},{"key":"e_1_2_2_24_1","doi-asserted-by":"publisher","DOI":"10.1145\/1185657.1185668"},{"key":"e_1_2_2_25_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2008.10.052"},{"key":"e_1_2_2_26_1","doi-asserted-by":"publisher","DOI":"10.1023\/A:1020128425143"},{"key":"e_1_2_2_27_1","doi-asserted-by":"publisher","DOI":"10.1137\/130918988"},{"key":"e_1_2_2_28_1","unstructured":"A. Grigor\u2019yan. 2009. Heat Kernel and Analysis on Manifolds. American Mathematical Society. A. Grigor\u2019yan. 2009. Heat Kernel and Analysis on Manifolds. American Mathematical Society."},{"key":"e_1_2_2_29_1","doi-asserted-by":"publisher","DOI":"10.1145\/3130800.3130849"},{"key":"e_1_2_2_30_1","doi-asserted-by":"publisher","DOI":"10.1111\/cgf.13116"},{"key":"e_1_2_2_31_1","doi-asserted-by":"publisher","DOI":"10.1080\/10586458.2004.10504543"},{"volume-title":"Proceedings of the Eurographics Symposium on Geometry Processing (SGP\u201915)","author":"Kezurer I.","key":"e_1_2_2_32_1"},{"key":"e_1_2_2_33_1","doi-asserted-by":"publisher","DOI":"10.1073\/pnas.95.15.8431"},{"key":"e_1_2_2_34_1","doi-asserted-by":"publisher","DOI":"10.1145\/2461912.2462005"},{"key":"e_1_2_2_35_1","doi-asserted-by":"publisher","DOI":"10.1145\/2767000"},{"volume-title":"Proceedings of the Symposium on Theory of Computing (STOC\u201916)","author":"Kyng R.","key":"e_1_2_2_36_1"},{"volume-title":"Proceedings of the International Conference on Machine Learning.","author":"Lin B.","key":"e_1_2_2_37_1"},{"key":"e_1_2_2_38_1","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2011.152"},{"key":"e_1_2_2_39_1","doi-asserted-by":"publisher","DOI":"10.1145\/2980179.2982424"},{"key":"e_1_2_2_40_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10851-013-0470-3"},{"key":"e_1_2_2_41_1","doi-asserted-by":"publisher","DOI":"10.1137\/17M1130617"},{"key":"e_1_2_2_42_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.geomphys.2018.04.012"},{"key":"e_1_2_2_43_1","doi-asserted-by":"publisher","DOI":"10.1111\/j.1467-8659.2012.03187.x"},{"key":"e_1_2_2_44_1","doi-asserted-by":"publisher","DOI":"10.1137\/0216045"},{"key":"e_1_2_2_45_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.cad.2016.05.002"},{"key":"e_1_2_2_46_1","doi-asserted-by":"publisher","DOI":"10.1145\/2601097.2601154"},{"key":"e_1_2_2_47_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.amc.2015.06.103"},{"key":"e_1_2_2_48_1","doi-asserted-by":"publisher","DOI":"10.1145\/2461912.2461935"},{"key":"e_1_2_2_49_1","doi-asserted-by":"crossref","unstructured":"K. Polthier and M. Schmies. 1998. Straightest Geodesics on Polyhedral Surfaces. Springer-Verlag. K. Polthier and M. Schmies. 1998. Straightest Geodesics on Polyhedral Surfaces. Springer-Verlag.","DOI":"10.1007\/978-3-662-03567-2_11"},{"key":"e_1_2_2_50_1","doi-asserted-by":"publisher","DOI":"10.1145\/2897824.2925930"},{"key":"e_1_2_2_51_1","doi-asserted-by":"publisher","DOI":"10.1145\/1183287.1183297"},{"key":"e_1_2_2_52_1","doi-asserted-by":"publisher","DOI":"10.1007\/BF02733251"},{"key":"e_1_2_2_53_1","doi-asserted-by":"publisher","DOI":"10.1111\/cgf.12045"},{"key":"e_1_2_2_54_1","doi-asserted-by":"publisher","DOI":"10.1145\/1141911.1141930"},{"key":"e_1_2_2_55_1","doi-asserted-by":"publisher","DOI":"10.1145\/1837026.1837034"},{"key":"e_1_2_2_56_1","doi-asserted-by":"publisher","DOI":"10.1145\/3197517.3201356"},{"key":"e_1_2_2_57_1","first-page":"1","article-title":"Vector diffusion maps and the connection","volume":"65","author":"Singer A.","year":"2012","journal-title":"Laplacian. Commun. Pure Appl. Math."},{"key":"e_1_2_2_58_1","doi-asserted-by":"publisher","DOI":"10.1145\/1007352.1007372"},{"key":"e_1_2_2_59_1","doi-asserted-by":"publisher","DOI":"10.1145\/1073204.1073228"},{"volume-title":"Proceedings of the 9th IMA Conference on the Mathematics of Surfaces. 99--113","author":"Tricoche X.","key":"e_1_2_2_60_1"},{"key":"e_1_2_2_61_1","doi-asserted-by":"publisher","DOI":"10.1111\/cgf.12864"},{"key":"e_1_2_2_62_1","first-page":"355","article-title":"Sur le point pour lequel la somme des distances de n points donn\u00e9s est minimum","volume":"43","author":"Weiszfeld E.","year":"1937","journal-title":"Journal"},{"key":"e_1_2_2_63_1","doi-asserted-by":"publisher","DOI":"10.1145\/2508363.2508379"},{"key":"e_1_2_2_64_1","doi-asserted-by":"publisher","DOI":"10.1145\/1183287.1183290"}],"container-title":["ACM Transactions on Graphics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3243651","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,31]],"date-time":"2022-12-31T21:25:03Z","timestamp":1672521903000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3243651"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,6,7]]},"references-count":64,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2019,6,30]]}},"alternative-id":["10.1145\/3243651"],"URL":"https:\/\/doi.org\/10.1145\/3243651","relation":{},"ISSN":["0730-0301","1557-7368"],"issn-type":[{"type":"print","value":"0730-0301"},{"type":"electronic","value":"1557-7368"}],"subject":[],"published":{"date-parts":[[2019,6,7]]},"assertion":[{"value":"2018-05-01","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2019-03-01","order":1,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2019-06-07","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}