{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T10:36:07Z","timestamp":1725964567806},"publisher-location":"New York, NY, USA","reference-count":40,"publisher":"ACM","license":[{"start":{"date-parts":[[2018,10,15]],"date-time":"2018-10-15T00:00:00Z","timestamp":1539561600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.acm.org\/publications\/policies\/copyright_policy#Background"}],"funder":[{"name":"ARO grant","award":["W911NF-15-1-0290"]},{"name":"National Natural Science Foundation of China","award":["61390514"]},{"name":"973 Program","award":["2015CB351803"]},{"name":"Fundamental Research Funds for the Central Universities"},{"name":"Faculty Research Gift Awards by NEC Laboratories of America and Blippar"}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2018,10,15]]},"DOI":"10.1145\/3240508.3240569","type":"proceedings-article","created":{"date-parts":[[2018,10,18]],"date-time":"2018-10-18T17:52:08Z","timestamp":1539885128000},"update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":9,"title":["Unregularized Auto-Encoder with Generative Adversarial Networks for Image Generation"],"prefix":"10.1145","author":[{"given":"Jiayu","family":"Wang","sequence":"first","affiliation":[{"name":"University of Science and Technology of China, Hefei, China"}]},{"given":"Wengang","family":"Zhou","sequence":"additional","affiliation":[{"name":"University of Science and Technology of China, Hefei, China"}]},{"given":"Jinhui","family":"Tang","sequence":"additional","affiliation":[{"name":"Nanjing University of Science and Technology, Nanjing, China"}]},{"given":"Zhongqian","family":"Fu","sequence":"additional","affiliation":[{"name":"University of Science and Technology of China, Hefei, China"}]},{"given":"Qi","family":"Tian","sequence":"additional","affiliation":[{"name":"Huawei Noah's Ark Lab & University of Texas at San Antonio, Hongkong, China"}]},{"given":"Houqiang","family":"Li","sequence":"additional","affiliation":[{"name":"University of Science and Technology of China, Hefei, China"}]}],"member":"320","published-online":{"date-parts":[[2018,10,15]]},"reference":[{"key":"e_1_3_2_1_1_1","doi-asserted-by":"crossref","unstructured":"Guillaume Alain Yoshua Bengio Li Yao Jason Yosinski \u00c9ric Thibodeau-Laufer Saizheng Zhang and Pascal Vincent. 2015. GSNs: Generative Stochastic Networks. Computer Science 2 (2015). Guillaume Alain Yoshua Bengio Li Yao Jason Yosinski \u00c9ric Thibodeau-Laufer Saizheng Zhang and Pascal Vincent. 2015. GSNs: Generative Stochastic Networks. Computer Science 2 (2015).","DOI":"10.1093\/imaiai\/iaw003"},{"key":"e_1_3_2_1_2_1","volume-title":"Began: Boundary equilibrium generative adversarial networks. arXiv preprint arXiv:1704.02304","author":"Berthelot David","year":"2017"},{"key":"e_1_3_2_1_3_1","unstructured":"Yuri Burda Roger Grosse and Ruslan Salakhutdinov. 2015. Importance Weighted Autoencoders. Computer Science (2015). Yuri Burda Roger Grosse and Ruslan Salakhutdinov. 2015. Importance Weighted Autoencoders. Computer Science (2015)."},{"key":"e_1_3_2_1_4_1","unstructured":"Ian Goodfellow Jean Pouget-Abadie Mehdi Mirza Bing Xu David Warde-Farley Sherjil Ozair Aaron Courville and Yoshua Bengio. 2014. Generative adversarial nets. In Advances in Neural Information Processing Systems (NIPS). 2672--2680. Ian Goodfellow Jean Pouget-Abadie Mehdi Mirza Bing Xu David Warde-Farley Sherjil Ozair Aaron Courville and Yoshua Bengio. 2014. Generative adversarial nets. In Advances in Neural Information Processing Systems (NIPS). 2672--2680."},{"key":"e_1_3_2_1_5_1","doi-asserted-by":"publisher","DOI":"10.1145\/3123266.3127939"},{"key":"e_1_3_2_1_6_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.309"},{"key":"e_1_3_2_1_7_1","unstructured":"Martin Heusel Hubert Ramsauer Thomas Unterthiner Bernhard Nessler and Sepp Hochreiter. 2017. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Advances in Neural Information Processing Systems (NIPS). 6629--6640. Martin Heusel Hubert Ramsauer Thomas Unterthiner Bernhard Nessler and Sepp Hochreiter. 2017. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Advances in Neural Information Processing Systems (NIPS). 6629--6640."},{"key":"e_1_3_2_1_8_1","doi-asserted-by":"publisher","DOI":"10.1162\/089976602760128018"},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"crossref","unstructured":"Geoffrey E. Hinton and Ruslan R Salakhutdinov. 2006. Reducing the dimensionality of data with neural networks. Science Vol. 313 5786 (2006) 504--507. Geoffrey E. Hinton and Ruslan R Salakhutdinov. 2006. Reducing the dimensionality of data with neural networks. Science Vol. 313 5786 (2006) 504--507.","DOI":"10.1126\/science.1127647"},{"key":"e_1_3_2_1_10_1","volume-title":"Proceedings of International Conference on Learning Representations (ICLR).","author":"Karras Tero","year":"2018"},{"key":"e_1_3_2_1_11_1","unstructured":"Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014). Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)."},{"key":"e_1_3_2_1_12_1","volume-title":"Proceedings of International Conference on Learning Representations (ICLR).","author":"Diederik"},{"key":"e_1_3_2_1_13_1","unstructured":"Alex Krizhevsky Ilya Sutskever and Geoffrey E. Hinton. 2012. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems (NIPS). 1097--1105. Alex Krizhevsky Ilya Sutskever and Geoffrey E. Hinton. 2012. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems (NIPS). 1097--1105."},{"key":"e_1_3_2_1_14_1","unstructured":"Yann LeCun. 1998. The MNIST database of handwritten digits. (1998). Yann LeCun. 1998. The MNIST database of handwritten digits. (1998)."},{"key":"e_1_3_2_1_15_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.19"},{"key":"e_1_3_2_1_16_1","doi-asserted-by":"publisher","DOI":"10.1145\/3123266.3123365"},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.425"},{"key":"e_1_3_2_1_18_1","volume-title":"Proceedings of International Conference on Learning Representations (ICLR).","author":"Metz Luke","year":"2017"},{"key":"e_1_3_2_1_19_1","unstructured":"Tomas Mikolov Ilya Sutskever Kai Chen Greg S. Corrado and Jeff Dean. 2013. Distributed representations of words and phrases and their compositionality. In Advances in Neural Information Processing Systems (NIPS). 3111--3119. Tomas Mikolov Ilya Sutskever Kai Chen Greg S. Corrado and Jeff Dean. 2013. Distributed representations of words and phrases and their compositionality. In Advances in Neural Information Processing Systems (NIPS). 3111--3119."},{"key":"e_1_3_2_1_20_1","volume-title":"Proceedings of International Conference on Machine Learning (ICML). 2642--2651","author":"Odena Augustus","year":"2017"},{"key":"e_1_3_2_1_21_1","volume-title":"Proceedings of International Conference on Machine Learning (ICML). 1747--1756","author":"van den Oord Aaron","year":"2016"},{"key":"e_1_3_2_1_22_1","unstructured":"Guo-Jun Qi. 2017. Loss-sensitive generative adversarial networks on lipschitz densities. CoRR Vol. abs\/1701.06264 (2017). Guo-Jun Qi. 2017. Loss-sensitive generative adversarial networks on lipschitz densities. CoRR Vol. abs\/1701.06264 (2017)."},{"key":"e_1_3_2_1_23_1","unstructured":"Alec Radford Luke Metz and Soumith Chintala. 2015. Unsupervised representation learning with deep convolutional generative adversarial networks. Computer Science (2015). Alec Radford Luke Metz and Soumith Chintala. 2015. Unsupervised representation learning with deep convolutional generative adversarial networks. Computer Science (2015)."},{"key":"e_1_3_2_1_24_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW.2014.131"},{"key":"e_1_3_2_1_25_1","volume-title":"Proceedings of International Conference on Machine Learning (ICML). 1060--1069","author":"Reed Scott","year":"2016"},{"key":"e_1_3_2_1_26_1","unstructured":"Tim Salimans Ian Goodfellow Wojciech Zaremba Vicki Cheung Alec Radford and Xi Chen. 2016. Improved techniques for training gans. In Advances in Neural Information Processing Systems (NIPS). 2234--2242. Tim Salimans Ian Goodfellow Wojciech Zaremba Vicki Cheung Alec Radford and Xi Chen. 2016. Improved techniques for training gans. In Advances in Neural Information Processing Systems (NIPS). 2234--2242."},{"key":"e_1_3_2_1_27_1","volume-title":"Proceedings of International Conference on Learning Representations (ICLR).","author":"Simonyan Karen","year":"2015"},{"key":"e_1_3_2_1_28_1","unstructured":"Ilya Sutskever Oriol Vinyals and Quoc V. Le. 2014. Sequence to sequence learning with neural networks. In Advances in Neural Information Processing Systems (NIPS). 3104--3112. Ilya Sutskever Oriol Vinyals and Quoc V. Le. 2014. Sequence to sequence learning with neural networks. In Advances in Neural Information Processing Systems (NIPS). 3104--3112."},{"key":"e_1_3_2_1_29_1","unstructured":"Lucas Theis and Matthias Bethge. 2015. Generative image modeling using spatial LSTMs. In Advances in Neural Information Processing Systems (NIPS). 1927--1935. Lucas Theis and Matthias Bethge. 2015. Generative image modeling using spatial LSTMs. In Advances in Neural Information Processing Systems (NIPS). 1927--1935."},{"key":"e_1_3_2_1_30_1","volume-title":"Wasserstein Auto-Encoders. In Proceedings of International Conference on Learning Representations (ICLR).","author":"Tolstikhin Ilya","year":"2018"},{"key":"e_1_3_2_1_31_1","unstructured":"Aaron van den Oord Nal Kalchbrenner Lasse Espeholt Oriol Vinyals Alex Graves etal 2016. Conditional image generation with pixelcnn decoders Advances in Neural Information Processing Systems (NIPS). 4790--4798. Aaron van den Oord Nal Kalchbrenner Lasse Espeholt Oriol Vinyals Alex Graves et al. 2016. Conditional image generation with pixelcnn decoders Advances in Neural Information Processing Systems (NIPS). 4790--4798."},{"key":"e_1_3_2_1_32_1","doi-asserted-by":"publisher","DOI":"10.5555\/1756006.1953039"},{"key":"e_1_3_2_1_33_1","doi-asserted-by":"publisher","DOI":"10.1145\/3123266.3123326"},{"key":"e_1_3_2_1_34_1","unstructured":"Yuhuai Wu Yuri Burda Ruslan Salakhutdinov and Roger Grosse. 2016. On the quantitative analysis of decoder-based generative models. arXiv preprint arXiv:1611.04273 (2016). Yuhuai Wu Yuri Burda Ruslan Salakhutdinov and Roger Grosse. 2016. On the quantitative analysis of decoder-based generative models. arXiv preprint arXiv:1611.04273 (2016)."},{"key":"e_1_3_2_1_35_1","unstructured":"Han Xiao Kashif Rasul and Roland Vollgraf. 2017. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017). Han Xiao Kashif Rasul and Roland Vollgraf. 2017. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)."},{"key":"e_1_3_2_1_36_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46493-0_47"},{"key":"e_1_3_2_1_37_1","unstructured":"Raymond Yeh Chen Chen Teck Yian Lim Mark Hasegawa-Johnson and Minh N. Do. 2016. Semantic image inpainting with perceptual and contextual losses. CoRR Vol. abs\/1607.07539 (2016). Raymond Yeh Chen Chen Teck Yian Lim Mark Hasegawa-Johnson and Minh N. Do. 2016. Semantic image inpainting with perceptual and contextual losses. CoRR Vol. abs\/1607.07539 (2016)."},{"key":"e_1_3_2_1_38_1","doi-asserted-by":"crossref","unstructured":"Han Zhang Tao Xu Hongsheng Li Shaoting Zhang Xiaogang Wang Xiaolei Huang and Dimitris Metaxas. 2017. StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks. arXiv preprint arXiv:1612.03242 (2017). Han Zhang Tao Xu Hongsheng Li Shaoting Zhang Xiaogang Wang Xiaolei Huang and Dimitris Metaxas. 2017. StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks. arXiv preprint arXiv:1612.03242 (2017).","DOI":"10.1109\/ICCV.2017.629"},{"key":"e_1_3_2_1_39_1","volume-title":"Proceedings of International Conference on Learning Representations (ICLR).","author":"Zhao Junbo","year":"2017"},{"key":"e_1_3_2_1_40_1","volume-title":"Proceedings of International Conference on Computer Vision (ICCV). 2223--2232","author":"Zhu Jun-Yan"}],"event":{"name":"MM '18: ACM Multimedia Conference","location":"Seoul Republic of Korea","acronym":"MM '18","sponsor":["SIGMM ACM Special Interest Group on Multimedia"]},"container-title":["Proceedings of the 26th ACM international conference on Multimedia"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3240508.3240569","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,7]],"date-time":"2023-01-07T11:11:33Z","timestamp":1673089893000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3240508.3240569"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,10,15]]},"references-count":40,"alternative-id":["10.1145\/3240508.3240569","10.1145\/3240508"],"URL":"https:\/\/doi.org\/10.1145\/3240508.3240569","relation":{},"subject":[],"published":{"date-parts":[[2018,10,15]]},"assertion":[{"value":"2018-10-15","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}